Answer :
To find the product of the factors, we expand the expression:
[tex]$$
(2x + 5)(7 - 4x)
$$[/tex]
Step 1: Multiply each term in the first binomial by each term in the second binomial (the FOIL method):
- First: Multiply [tex]$2x$[/tex] by [tex]$7$[/tex]:
[tex]$$
2x \cdot 7 = 14x.
$$[/tex]
- Outer: Multiply [tex]$2x$[/tex] by [tex]$-4x$[/tex]:
[tex]$$
2x \cdot (-4x) = -8x^2.
$$[/tex]
- Inner: Multiply [tex]$5$[/tex] by [tex]$7$[/tex]:
[tex]$$
5 \cdot 7 = 35.
$$[/tex]
- Last: Multiply [tex]$5$[/tex] by [tex]$-4x$[/tex]:
[tex]$$
5 \cdot (-4x) = -20x.
$$[/tex]
Step 2: Write the expression with all terms:
[tex]$$
-8x^2 + 14x - 20x + 35.
$$[/tex]
Step 3: Combine like terms (specifically the [tex]$x$[/tex] terms):
[tex]$$
14x - 20x = -6x.
$$[/tex]
Thus, the quadratic expression becomes:
[tex]$$
-8x^2 - 6x + 35.
$$[/tex]
The correct answer is:
[tex]$$\boxed{-8x^2 - 6x + 35}.$$[/tex]
[tex]$$
(2x + 5)(7 - 4x)
$$[/tex]
Step 1: Multiply each term in the first binomial by each term in the second binomial (the FOIL method):
- First: Multiply [tex]$2x$[/tex] by [tex]$7$[/tex]:
[tex]$$
2x \cdot 7 = 14x.
$$[/tex]
- Outer: Multiply [tex]$2x$[/tex] by [tex]$-4x$[/tex]:
[tex]$$
2x \cdot (-4x) = -8x^2.
$$[/tex]
- Inner: Multiply [tex]$5$[/tex] by [tex]$7$[/tex]:
[tex]$$
5 \cdot 7 = 35.
$$[/tex]
- Last: Multiply [tex]$5$[/tex] by [tex]$-4x$[/tex]:
[tex]$$
5 \cdot (-4x) = -20x.
$$[/tex]
Step 2: Write the expression with all terms:
[tex]$$
-8x^2 + 14x - 20x + 35.
$$[/tex]
Step 3: Combine like terms (specifically the [tex]$x$[/tex] terms):
[tex]$$
14x - 20x = -6x.
$$[/tex]
Thus, the quadratic expression becomes:
[tex]$$
-8x^2 - 6x + 35.
$$[/tex]
The correct answer is:
[tex]$$\boxed{-8x^2 - 6x + 35}.$$[/tex]