College

Select the correct answer.

Which quadratic expression represents the product of these factors?

[tex](2x + 5)(7 - 4x)[/tex]

A. [tex]-8x^2 + 6x - 35[/tex]
B. [tex]-8x^2 + 34x - 35[/tex]
C. [tex]-8x^2 - 34x + 35[/tex]
D. [tex]-8x^2 - 6x + 35[/tex]

Answer :

To solve the problem of finding the quadratic expression that represents the product of the factors [tex]\((2x + 5)(7 - 4x)\)[/tex], follow these steps:

1. Distribute the terms:

- First, distribute [tex]\(2x\)[/tex] with both terms in the second factor:
[tex]\[
2x \times 7 = 14x
\][/tex]
[tex]\[
2x \times -4x = -8x^2
\][/tex]

- Next, distribute [tex]\(5\)[/tex] with both terms in the second factor:
[tex]\[
5 \times 7 = 35
\][/tex]
[tex]\[
5 \times -4x = -20x
\][/tex]

2. Combine all the terms:

- Now, combine all the results from the distribution:
[tex]\[
-8x^2 + 14x - 20x + 35
\][/tex]

3. Combine like terms:

- Combine the [tex]\(x\)[/tex] terms ([tex]\(14x - 20x\)[/tex]):
[tex]\[
14x - 20x = -6x
\][/tex]

4. Write the final quadratic expression:
[tex]\[
-8x^2 - 6x + 35
\][/tex]

Therefore, the quadratic expression that represents the product of [tex]\((2x + 5)(7 - 4x)\)[/tex] is [tex]\(-8x^2 - 6x + 35\)[/tex].

The correct answer is:

D. [tex]\(-8x^2 - 6x + 35\)[/tex]