Answer :
Let's simplify the expression [tex]\((-3x^2 + 2x - 4) + (4x^2 + 5x + 9)\)[/tex].
1. Combine like terms:
- Terms with [tex]\(x^2\)[/tex]:
[tex]\(-3x^2 + 4x^2 = 1x^2\)[/tex] or simply [tex]\(x^2\)[/tex].
- Terms with [tex]\(x\)[/tex]:
[tex]\(2x + 5x = 7x\)[/tex].
- Constant terms:
[tex]\(-4 + 9 = 5\)[/tex].
2. Rewrite the expression:
After combining like terms, the simplified expression is:
[tex]\[ x^2 + 7x + 5 \][/tex]
Therefore, the simplified form of the expression is [tex]\(x^2 + 7x + 5\)[/tex]. So the correct answer is:
[tex]\(x^2 + 7x + 5\)[/tex]
1. Combine like terms:
- Terms with [tex]\(x^2\)[/tex]:
[tex]\(-3x^2 + 4x^2 = 1x^2\)[/tex] or simply [tex]\(x^2\)[/tex].
- Terms with [tex]\(x\)[/tex]:
[tex]\(2x + 5x = 7x\)[/tex].
- Constant terms:
[tex]\(-4 + 9 = 5\)[/tex].
2. Rewrite the expression:
After combining like terms, the simplified expression is:
[tex]\[ x^2 + 7x + 5 \][/tex]
Therefore, the simplified form of the expression is [tex]\(x^2 + 7x + 5\)[/tex]. So the correct answer is:
[tex]\(x^2 + 7x + 5\)[/tex]