College

Select the correct answer.

What is the domain of the function [tex]h[/tex]?

[tex]h(x) = \sqrt{x-7} + 5[/tex]

A. [tex]x \geq 7[/tex]

B. [tex]x \leq 5[/tex]

C. [tex]x \geq 5[/tex]

D. [tex]x \leq -7[/tex]

Answer :

To find the domain of the function [tex]\( h(x) = \sqrt{x - 7} + 5 \)[/tex], we need to look at the part under the square root, which is [tex]\( x - 7 \)[/tex].

For the square root to be defined and produce real numbers, the expression inside the square root must be non-negative (i.e., greater than or equal to zero). So, we set up the inequality:

[tex]\[ x - 7 \geq 0 \][/tex]

Next, solve this inequality for [tex]\( x \)[/tex]:

1. Add 7 to both sides to isolate [tex]\( x \)[/tex]:

[tex]\[ x \geq 7 \][/tex]

This inequality means that [tex]\( x \)[/tex] must be greater than or equal to 7 for the function [tex]\( h(x) \)[/tex] to be defined.

Therefore, the domain of the function [tex]\( h(x) = \sqrt{x - 7} + 5 \)[/tex] is all real numbers [tex]\( x \)[/tex] such that [tex]\( x \geq 7 \)[/tex].

The correct answer is:

A. [tex]\( x \geq 7 \)[/tex]