College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Select the correct answer.

This table defines a function.

[tex]\[
\begin{array}{|c|c|c|c|c|}
\hline
x & 7 & 10 & 13 & 16 \\
\hline
y & 21 & 30 & 39 & 48 \\
\hline
\end{array}
\][/tex]

Which table represents the inverse of the function defined above?

A.
[tex]\[
\begin{array}{|c|c|c|c|c|}
\hline
x & -21 & -30 & -39 & -48 \\
\hline
y & 7 & 10 & 13 & 16 \\
\hline
\end{array}
\][/tex]

B.
[tex]\[
\begin{array}{|c|c|c|c|c|}
\hline
x & 7 & 10 & 13 & 16 \\
\hline
y & -21 & -30 & -39 & -48 \\
\hline
\end{array}
\][/tex]

C.
[tex]\[
\begin{array}{|c|c|c|c|c|}
\hline
x & 21 & 30 & 39 & 48 \\
\hline
y & 7 & 10 & 13 & 16 \\
\hline
\end{array}
\][/tex]

D.
[tex]\[
\begin{array}{|c|c|c|c|c|}
\hline
x & -7 & -10 & -13 & -16 \\
\hline
y & 21 & 30 & 39 & 48 \\
\hline
\end{array}
\][/tex]

Answer :

To find the inverse of the function defined by the given table, we need to swap the roles of [tex]\(x\)[/tex] and [tex]\(y\)[/tex]. In other words, the values that were originally associated with [tex]\(x\)[/tex] will now be associated with [tex]\(y\)[/tex], and vice versa. Let's go through the steps:

1. Understand the Original Function:
- The table given is:
```
[tex]\[
\begin{tabular}{|c|c|c|c|c|}
\hline
$x$ & 7 & 10 & 13 & 16 \\
\hline
$y$ & 21 & 30 & 39 & 48 \\
\hline
\end{tabular}
\][/tex]
```
- This tells us that when [tex]\(x = 7\)[/tex], [tex]\(y = 21\)[/tex], when [tex]\(x = 10\)[/tex], [tex]\(y = 30\)[/tex], and so on.

2. Build the Inverse Table:
- To create the inverse function, simply swap each [tex]\(x\)[/tex] value with its corresponding [tex]\(y\)[/tex] value:
- [tex]\(x\)[/tex] becomes [tex]\(y\)[/tex] and [tex]\(y\)[/tex] becomes [tex]\(x\)[/tex].

3. Generate the Inverse Table:
- The new inverse table will be:
```
[tex]\[
\begin{tabular}{|c|c|c|c|c|}
\hline
$x$ & 21 & 30 & 39 & 48 \\
\hline
$y$ & 7 & 10 & 13 & 16 \\
\hline
\end{tabular}
\][/tex]
```

4. Select the Correct Option:
- When we look at the options provided, the table that matches this inverse is:
- Option C:
```
[tex]\[
\begin{tabular}{|c|c|c|c|c|}
\hline
$x$ & 21 & 30 & 39 & 48 \\
\hline
$y$ & 7 & 10 & 13 & 16 \\
\hline
\end{tabular}
\][/tex]
```

So, the correct answer is Option C.