High School

Select the correct answer.

[tex]
\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{Weight/Calories per Day} & \text{1000 to 1500 cal.} & \text{1500 to 2000 cal.} & \text{2000 to 2500 cal.} & \text{Total} \\
\hline
\text{120 lb.} & 90 & 80 & 10 & 180 \\
\hline
\text{145 lb.} & 35 & 143 & 25 & 203 \\
\hline
\text{165 lb.} & 15 & 27 & 75 & 117 \\
\hline
\text{Total} & 140 & 250 & 110 & 500 \\
\hline
\end{array}
\]
[/tex]

Based on the data in the two-way table, which statement is true?

A. [tex] P(\text{consumes 1000-1500 calories} \mid \text{weight is 165}) = P(\text{consumes 1000-1500 calories}) [/tex]

B. [tex] P(\text{weight is 120 lb.} \mid \text{consumes 2000-2500 calories}) \neq P(\text{weight is 120 lb.}) [/tex]

C. [tex] P(\text{weight is 165 lb.} \mid \text{consumes 1000-2000 calories}) = P(\text{weight is 165 lb.}) [/tex]

D. [tex] P(\text{weight is 145 lb.} \mid \text{consumes 1000-2000 calories}) = P(\text{consumes 1000-2000 calories}) [/tex]

Answer :

Let's carefully analyze each statement from the data in the two-way table and determine which one is true:

### Total Probabilities:
First, we find the totals needed:
- Total weight = 500: The sum of all individuals (180 + 203 + 117).
- Total calories of each range:
- 1000-1500 cal: 140.
- 1500-2000 cal: 250.
- 2000-2500 cal: 110.

- Total by weight:
- 120 lb: 180.
- 145 lb: 203.
- 165 lb: 117.

### Checking Each Statement:

A. [tex]\( P(\text{consumes 1000-1500 calories} \mid \text{weight is 165}) = P(\text{consumes 1000-1500 calories}) \)[/tex]

- Probability of consuming 1000-1500 calories given weight is 165:
[tex]\(\frac{15}{117}\)[/tex].

- Probability of consuming 1000-1500 calories:
[tex]\(\frac{140}{500}\)[/tex].

Since [tex]\(\frac{15}{117} \neq \frac{140}{500}\)[/tex], this statement is false.

B. [tex]\( P(\text{weight is 120 lb} \mid \text{consumes 2000-2500 calories}) \neq P(\text{weight is 120 lb}) \)[/tex]

- Probability of weight being 120 lb given consumes 2000-2500 calories:
[tex]\(\frac{10}{110}\)[/tex].

- Probability of weight being 120 lb:
[tex]\(\frac{180}{500}\)[/tex].

Since [tex]\(\frac{10}{110} \neq \frac{180}{500}\)[/tex], this statement is true.

C. [tex]\( P(\text{weight is 165 lb} \mid \text{consumes 1000-2000 calories}) = P(\text{weight is 165 lb}) \)[/tex]

- Probability of weight being 165 lb given consumes 1000-2000 calories:
[tex]\(\frac{15 + 27}{140 + 250} = \frac{42}{390}\)[/tex].

- Probability of weight being 165 lb:
[tex]\(\frac{117}{500}\)[/tex].

Since [tex]\(\frac{42}{390} \neq \frac{117}{500}\)[/tex], this statement is false.

D. [tex]\( P(\text{weight is 145 lb} \mid \text{consumes 1000-2000 calories}) = P(\text{consumes 1000-2000 calories}) \)[/tex]

- Probability of weight being 145 lb given consumes 1000-2000 calories:
[tex]\(\frac{35 + 143}{140 + 250} = \frac{178}{390}\)[/tex].

- Probability of consuming 1000-2000 calories:
[tex]\(\frac{390}{500}\)[/tex].

Since [tex]\(\frac{178}{390} \neq \frac{390}{500}\)[/tex], this statement is false.

### Conclusion:
Statement B is the only true statement among the four.