High School

Select the correct answer.

Simplify the following polynomial expression:

[tex]\left(5x^4 - 9x^3 + 7x - 1\right) + \left(-8x^4 + 4x^2 - 3x + 2\right) - \left(-4x^3 + 5x - 1\right)(2x - 7)[/tex]

A. [tex]11x^4 - 21x^3 + 14x^2 + 33x - 6[/tex]
B. [tex]5x^4 - 37x^3 - 6x^2 + 41x - 8[/tex]
C. [tex]5x^4 - 37x^3 - 6x^2 + 41x - 6[/tex]
D. [tex]11x^4 - 21x^3 + 14x^2 + 33x - 8[/tex]

Answer :

We start with the expression

[tex]$$
\left(5x^4 - 9x^3 + 7x - 1\right) + \left(-8x^4 + 4x^2 - 3x + 2\right) - \left(-4x^3 + 5x - 1\right)(2x - 7).
$$[/tex]

Our goal is to simplify it step by step.

--------------------------------------------------

Step 1. Combine the First Two Polynomials

Add the first two expressions:

[tex]\[
5x^4 - 9x^3 + 7x - 1 \quad \text{and} \quad -8x^4 + 4x^2 - 3x + 2.
\][/tex]

Group like terms:

- For [tex]$x^4$[/tex]:
[tex]$$
5x^4 + (-8x^4) = -3x^4.
$$[/tex]
- For [tex]$x^3$[/tex]:
[tex]$$
-9x^3 \quad (\text{no matching term from the second polynomial}).
$$[/tex]
- For [tex]$x^2$[/tex]:
[tex]$$
0 + 4x^2 = 4x^2.
$$[/tex]
- For [tex]$x$[/tex]:
[tex]$$
7x + (-3x) = 4x.
$$[/tex]
- Constants:
[tex]$$
-1 + 2 = 1.
$$[/tex]

Thus, the sum is

[tex]$$
-3x^4 - 9x^3 + 4x^2 + 4x + 1.
$$[/tex]

--------------------------------------------------

Step 2. Expand the Product

Next, expand the product

[tex]$$
\left(-4x^3 + 5x - 1\right)(2x - 7).
$$[/tex]

Multiply each term in the first polynomial by each term in the second:

1. Multiply [tex]$-4x^3$[/tex] by [tex]$(2x - 7)$[/tex]:
[tex]$$
-4x^3 \cdot 2x = -8x^4, \quad -4x^3 \cdot (-7) = 28x^3.
$$[/tex]
2. Multiply [tex]$5x$[/tex] by [tex]$(2x - 7)$[/tex]:
[tex]$$
5x \cdot 2x = 10x^2, \quad 5x \cdot (-7) = -35x.
$$[/tex]
3. Multiply [tex]$-1$[/tex] by [tex]$(2x - 7)$[/tex]:
[tex]$$
-1 \cdot 2x = -2x, \quad -1 \cdot (-7) = 7.
$$[/tex]

Now, combine like terms:

- The [tex]$x^4$[/tex] term is:
[tex]$$
-8x^4.
$$[/tex]
- The [tex]$x^3$[/tex] term is:
[tex]$$
28x^3.
$$[/tex]
- The [tex]$x^2$[/tex] term is:
[tex]$$
10x^2.
$$[/tex]
- The [tex]$x$[/tex] terms:
[tex]$$
-35x - 2x = -37x.
$$[/tex]
- The constant term is:
[tex]$$
7.
$$[/tex]

Thus, the product simplifies to

[tex]$$
-8x^4 + 28x^3 + 10x^2 - 37x + 7.
$$[/tex]

--------------------------------------------------

Step 3. Subtract the Product from the Sum

Now, subtract the expanded product from the sum obtained in Step 1:

[tex]\[
\left[-3x^4 - 9x^3 + 4x^2 + 4x + 1\right] - \left[-8x^4 + 28x^3 + 10x^2 - 37x + 7\right].
\][/tex]

Distribute the negative sign to the second bracket:

[tex]\[
-3x^4 - 9x^3 + 4x^2 + 4x + 1 + 8x^4 - 28x^3 - 10x^2 + 37x - 7.
\][/tex]

Combine like terms:

- For [tex]$x^4$[/tex]:
[tex]$$
-3x^4 + 8x^4 = 5x^4.
$$[/tex]
- For [tex]$x^3$[/tex]:
[tex]$$
-9x^3 - 28x^3 = -37x^3.
$$[/tex]
- For [tex]$x^2$[/tex]:
[tex]$$
4x^2 - 10x^2 = -6x^2.
$$[/tex]
- For [tex]$x$[/tex]:
[tex]$$
4x + 37x = 41x.
$$[/tex]
- For the constant term:
[tex]$$
1 - 7 = -6.
$$[/tex]

Thus, the simplified expression becomes

[tex]$$
5x^4 - 37x^3 - 6x^2 + 41x - 6.
$$[/tex]

--------------------------------------------------

Conclusion

The correct simplified form of the given polynomial expression is

[tex]$$
\boxed{5x^4 - 37x^3 - 6x^2 + 41x - 6}.
$$[/tex]

This corresponds to option C.