College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Select the correct answer.

Simplify the following polynomial expression:

[tex]\left(5x^4 - 9x^3 + 7x - 1\right) + \left(-8x^4 + 4x^2 - 3x + 2\right) - \left(-4x^3 + 5x - 1\right)(2x - 7)[/tex]

A. [tex]5x^4 - 37x^3 - 6x^2 + 41x - 8[/tex]
B. [tex]5x^4 - 37x^3 - 6x^2 + 41x - 6[/tex]
C. [tex]11x^4 - 21x^3 + 14x^2 + 33x - 8[/tex]
D. [tex]11x^4 - 21x^3 + 14x^2 + 33x - 6[/tex]

Answer :

Sure, let's simplify the polynomial expression step-by-step.

We are given the expression:

[tex]\[
(5x^4 - 9x^3 + 7x - 1) + (-8x^4 + 4x^2 - 3x + 2) - \left[(-4x^3 + 5x - 1)(2x - 7)\right]
\][/tex]

### Step 1: Distribute the terms in the third part

First, let's expand the product [tex]\((-4x^3 + 5x - 1)(2x - 7)\)[/tex]:

- Multiply [tex]\(-4x^3\)[/tex] by each term in [tex]\( (2x - 7) \)[/tex]:
[tex]\[
-4x^3 \cdot 2x = -8x^4
\][/tex]
[tex]\[
-4x^3 \cdot (-7) = 28x^3
\][/tex]

- Multiply [tex]\(5x\)[/tex] by each term in [tex]\( (2x - 7) \)[/tex]:
[tex]\[
5x \cdot 2x = 10x^2
\][/tex]
[tex]\[
5x \cdot (-7) = -35x
\][/tex]

- Multiply [tex]\(-1\)[/tex] by each term in [tex]\( (2x - 7) \)[/tex]:
[tex]\[
-1 \cdot 2x = -2x
\][/tex]
[tex]\[
-1 \cdot (-7) = 7
\][/tex]

Putting it all together, we get:
[tex]\[
-8x^4 + 28x^3 + 10x^2 - 35x - 2x + 7
\][/tex]

Combine like terms:
[tex]\[
-8x^4 + 28x^3 + 10x^2 - 37x + 7
\][/tex]

### Step 2: Substitute back into the expression and simplify

Substitute the expanded expression back into the original formula:

[tex]\[
(5x^4 - 9x^3 + 7x - 1) + (-8x^4 + 4x^2 - 3x + 2) - (-8x^4 + 28x^3 + 10x^2 - 37x + 7)
\][/tex]

Remove the parentheses and combine like terms:

- Combine [tex]\(x^4\)[/tex] terms:
[tex]\[
5x^4 - 8x^4 + 8x^4 = 5x^4
\][/tex]

- Combine [tex]\(x^3\)[/tex] terms:
[tex]\[
-9x^3 - 28x^3 = -37x^3
\][/tex]

- Combine [tex]\(x^2\)[/tex] terms:
[tex]\[
4x^2 - 10x^2 = -6x^2
\][/tex]

- Combine [tex]\(x\)[/tex] terms:
[tex]\[
7x - 3x + 37x = 41x
\][/tex]

- Combine constant terms:
[tex]\[
-1 + 2 - 7 = -6
\][/tex]

### Final Answer

The simplified expression is:

[tex]\[
5x^4 - 37x^3 - 6x^2 + 41x - 6
\][/tex]

So, the correct answer is option B:

5x^4 - 37x^3 - 6x^2 + 41x - 6.