College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Select the correct answer.

Simplify the following polynomial expression:

[tex]\left(5x^4 - 9x^3 + 7x - 1\right) + \left(-8x^4 + 4x^2 - 3x + 2\right) - \left(-4x^3 + 5x - 1\right)(2x - 7)[/tex]

A. [tex]11x^4 - 21x^3 + 14x^2 + 33x - 6[/tex]

B. [tex]5x^4 - 37x^3 - 6x^2 + 41x - 6[/tex]

C. [tex]11x^4 - 21x^3 + 14x^2 + 33x - 8[/tex]

D. [tex]5x^4 - 37x^3 - 6x^2 + 41x - 8[/tex]

Answer :

To simplify the given polynomial expression, let's break it down step by step:

1. Write down the polynomial expression:

[tex]\[
(5x^4 - 9x^3 + 7x - 1) + (-8x^4 + 4x^2 - 3x + 2) - (-4x^3 + 5x - 1)(2x - 7)
\][/tex]

2. Simplify the first two polynomials:

Combine like terms for the expressions [tex]\((5x^4 - 9x^3 + 7x - 1)\)[/tex] and [tex]\((-8x^4 + 4x^2 - 3x + 2)\)[/tex].

[tex]\[
= 5x^4 - 9x^3 + 7x - 1 - 8x^4 + 4x^2 - 3x + 2
\][/tex]

Combine like terms:

[tex]\[
= (5x^4 - 8x^4) + (-9x^3) + 4x^2 + (7x - 3x) + (-1 + 2)
\][/tex]

[tex]\[
= -3x^4 - 9x^3 + 4x^2 + 4x + 1
\][/tex]

3. Distribute and simplify the third polynomial:

Distribute the terms over the product:

[tex]\((-4x^3 + 5x - 1)(2x - 7)\)[/tex].

[tex]\[
= (-4x^3)(2x) + (-4x^3)(-7) + (5x)(2x) + (5x)(-7) - (1)(2x) - (1)(-7)
\][/tex]

[tex]\[
= -8x^4 + 28x^3 + 10x^2 - 35x - 2x + 7
\][/tex]

Combine like terms:

[tex]\[
= -8x^4 + 28x^3 + 10x^2 - 37x + 7
\][/tex]

4. Subtract the two results:

Subtract the expression obtained in step 3 from the expression in step 2:

[tex]\[
= (-3x^4 - 9x^3 + 4x^2 + 4x + 1) - (-8x^4 + 28x^3 + 10x^2 - 37x + 7)
\][/tex]

[tex]\[
= -3x^4 + 8x^4 - 9x^3 - 28x^3 + 4x^2 - 10x^2 + 4x + 37x + 1 - 7
\][/tex]

Combine like terms:

[tex]\[
= 5x^4 - 37x^3 - 6x^2 + 41x - 6
\][/tex]

Final Answer:

The simplified polynomial expression is [tex]\(5x^4 - 37x^3 - 6x^2 + 41x - 6\)[/tex].

Therefore, the correct answer is:

B. [tex]\(5x^4 - 37x^3 - 6x^2 + 41x - 6\)[/tex]