Answer :
To simplify the expression
[tex]$$-4x^2(3x-7),$$[/tex]
we use the distributive property, which means multiplying [tex]$-4x^2$[/tex] by each term inside the parentheses.
1. Multiply [tex]$-4x^2$[/tex] by [tex]$3x$[/tex]:
[tex]$$-4x^2 \cdot 3x = -12x^{3}.$$[/tex]
2. Multiply [tex]$-4x^2$[/tex] by [tex]$-7$[/tex]:
[tex]$$-4x^2 \cdot (-7) = 28x^{2}.$$[/tex]
3. Combine the results:
[tex]$$-12x^3 + 28x^2.$$[/tex]
Thus, the simplified expression is
[tex]$$-12x^3 + 28x^2,$$[/tex]
which corresponds to option A.
[tex]$$-4x^2(3x-7),$$[/tex]
we use the distributive property, which means multiplying [tex]$-4x^2$[/tex] by each term inside the parentheses.
1. Multiply [tex]$-4x^2$[/tex] by [tex]$3x$[/tex]:
[tex]$$-4x^2 \cdot 3x = -12x^{3}.$$[/tex]
2. Multiply [tex]$-4x^2$[/tex] by [tex]$-7$[/tex]:
[tex]$$-4x^2 \cdot (-7) = 28x^{2}.$$[/tex]
3. Combine the results:
[tex]$$-12x^3 + 28x^2.$$[/tex]
Thus, the simplified expression is
[tex]$$-12x^3 + 28x^2,$$[/tex]
which corresponds to option A.