Answer :
To simplify the expression
[tex]$$-4x^2(3x - 7),$$[/tex]
we follow these steps:
1. Distribute (multiply) [tex]$-4x^2$[/tex] to each term inside the parentheses.
2. Multiply [tex]$-4x^2$[/tex] by [tex]$3x$[/tex]:
[tex]$$-4x^2 \cdot 3x = (-4 \cdot 3)x^{2+1} = -12x^3.$$[/tex]
3. Multiply [tex]$-4x^2$[/tex] by [tex]$-7$[/tex]:
[tex]$$-4x^2 \cdot (-7) = (28)x^2 = 28x^2.$$[/tex]
4. Combine the two results:
[tex]$$-12x^3 + 28x^2.$$[/tex]
Thus, the simplified expression is
[tex]$$-12x^3 + 28x^2.$$[/tex]
This corresponds to option A.
[tex]$$-4x^2(3x - 7),$$[/tex]
we follow these steps:
1. Distribute (multiply) [tex]$-4x^2$[/tex] to each term inside the parentheses.
2. Multiply [tex]$-4x^2$[/tex] by [tex]$3x$[/tex]:
[tex]$$-4x^2 \cdot 3x = (-4 \cdot 3)x^{2+1} = -12x^3.$$[/tex]
3. Multiply [tex]$-4x^2$[/tex] by [tex]$-7$[/tex]:
[tex]$$-4x^2 \cdot (-7) = (28)x^2 = 28x^2.$$[/tex]
4. Combine the two results:
[tex]$$-12x^3 + 28x^2.$$[/tex]
Thus, the simplified expression is
[tex]$$-12x^3 + 28x^2.$$[/tex]
This corresponds to option A.