Answer :
To simplify the expression
[tex]$$-4x^2 (3x-7),$$[/tex]
we distribute [tex]$-4x^2$[/tex] over the terms inside the parentheses.
Step 1: Multiply [tex]$-4x^2$[/tex] by [tex]$3x$[/tex]:
[tex]$$-4x^2 \cdot 3x = -12x^3.$$[/tex]
Step 2: Multiply [tex]$-4x^2$[/tex] by [tex]$-7$[/tex]:
[tex]$$-4x^2 \cdot (-7) = +28x^2.$$[/tex]
Step 3: Combine the results:
[tex]$$-12x^3 + 28x^2.$$[/tex]
Thus, the simplified expression is
[tex]$$-12x^3+28x^2.$$[/tex]
Among the options provided, this corresponds to option B.
[tex]$$-4x^2 (3x-7),$$[/tex]
we distribute [tex]$-4x^2$[/tex] over the terms inside the parentheses.
Step 1: Multiply [tex]$-4x^2$[/tex] by [tex]$3x$[/tex]:
[tex]$$-4x^2 \cdot 3x = -12x^3.$$[/tex]
Step 2: Multiply [tex]$-4x^2$[/tex] by [tex]$-7$[/tex]:
[tex]$$-4x^2 \cdot (-7) = +28x^2.$$[/tex]
Step 3: Combine the results:
[tex]$$-12x^3 + 28x^2.$$[/tex]
Thus, the simplified expression is
[tex]$$-12x^3+28x^2.$$[/tex]
Among the options provided, this corresponds to option B.