Answer :
Let's simplify the expression [tex]\(-4x^2(3x - 7)\)[/tex] step-by-step.
1. Distribute [tex]\(-4x^2\)[/tex] to each term inside the parentheses.
- First, multiply [tex]\(-4x^2\)[/tex] by [tex]\(3x\)[/tex]:
[tex]\[
-4x^2 \times 3x = -12x^3
\][/tex]
- Second, multiply [tex]\(-4x^2\)[/tex] by [tex]\(-7\)[/tex]:
[tex]\[
-4x^2 \times (-7) = 28x^2
\][/tex]
2. Combine the results.
- Put the two terms together:
[tex]\[
-12x^3 + 28x^2
\][/tex]
This simplified expression matches option A:
A. [tex]\(-12x^3 + 28x^2\)[/tex]
Hence, the correct answer is choice A.
1. Distribute [tex]\(-4x^2\)[/tex] to each term inside the parentheses.
- First, multiply [tex]\(-4x^2\)[/tex] by [tex]\(3x\)[/tex]:
[tex]\[
-4x^2 \times 3x = -12x^3
\][/tex]
- Second, multiply [tex]\(-4x^2\)[/tex] by [tex]\(-7\)[/tex]:
[tex]\[
-4x^2 \times (-7) = 28x^2
\][/tex]
2. Combine the results.
- Put the two terms together:
[tex]\[
-12x^3 + 28x^2
\][/tex]
This simplified expression matches option A:
A. [tex]\(-12x^3 + 28x^2\)[/tex]
Hence, the correct answer is choice A.