Answer :
To simplify the expression [tex]\(-4x^2(3x - 7)\)[/tex], we can use the distributive property. This means we will multiply [tex]\(-4x^2\)[/tex] by each term inside the parentheses.
Here's a step-by-step breakdown:
1. Distribute [tex]\(-4x^2\)[/tex] to the first term in the parentheses, [tex]\(3x\)[/tex]:
[tex]\[
-4x^2 \times 3x = -12x^3
\][/tex]
2. Distribute [tex]\(-4x^2\)[/tex] to the second term in the parentheses, [tex]\(-7\)[/tex]:
[tex]\[
-4x^2 \times (-7) = 28x^2
\][/tex]
3. Combine these results:
[tex]\[
-12x^3 + 28x^2
\][/tex]
After simplifying the expression, we find that the answer is:
B. [tex]\(-12x^3 + 28x^2\)[/tex]
Here's a step-by-step breakdown:
1. Distribute [tex]\(-4x^2\)[/tex] to the first term in the parentheses, [tex]\(3x\)[/tex]:
[tex]\[
-4x^2 \times 3x = -12x^3
\][/tex]
2. Distribute [tex]\(-4x^2\)[/tex] to the second term in the parentheses, [tex]\(-7\)[/tex]:
[tex]\[
-4x^2 \times (-7) = 28x^2
\][/tex]
3. Combine these results:
[tex]\[
-12x^3 + 28x^2
\][/tex]
After simplifying the expression, we find that the answer is:
B. [tex]\(-12x^3 + 28x^2\)[/tex]