College

Select the correct answer.

Simplify the expression [tex]\(-4x^2(3x-7)\)[/tex]:

A. [tex]\(-12x^3 - 28x^2\)[/tex]

B. [tex]\(-12x^3 + 28x^2\)[/tex]

C. [tex]\(-12x^3 - 28\)[/tex]

D. [tex]\(-12x^3 + 28\)[/tex]

Answer :

To simplify the expression [tex]\(-4x^2(3x - 7)\)[/tex], we can use the distributive property. This means we will multiply [tex]\(-4x^2\)[/tex] by each term inside the parentheses.

Here's a step-by-step breakdown:

1. Distribute [tex]\(-4x^2\)[/tex] to the first term in the parentheses, [tex]\(3x\)[/tex]:

[tex]\[
-4x^2 \times 3x = -12x^3
\][/tex]

2. Distribute [tex]\(-4x^2\)[/tex] to the second term in the parentheses, [tex]\(-7\)[/tex]:

[tex]\[
-4x^2 \times (-7) = 28x^2
\][/tex]

3. Combine these results:

[tex]\[
-12x^3 + 28x^2
\][/tex]

After simplifying the expression, we find that the answer is:

B. [tex]\(-12x^3 + 28x^2\)[/tex]