Answer :
Sure, let's simplify the expression step-by-step:
We have the expression:
[tex]\[ -4x^2(3x - 7) \][/tex]
To simplify this, we will distribute [tex]\( -4x^2 \)[/tex] to each term inside the parentheses.
1. Distribute [tex]\( -4x^2 \)[/tex] to [tex]\( 3x \)[/tex]:
[tex]\[ -4x^2 \times 3x = -12x^3 \][/tex]
2. Distribute [tex]\( -4x^2 \)[/tex] to [tex]\( -7 \)[/tex]:
[tex]\[ -4x^2 \times -7 = 28x^2 \][/tex]
Now we combine these results:
[tex]\[ -12x^3 + 28x^2 \][/tex]
Thus, the simplified expression is:
[tex]\[ -12x^3 + 28x^2 \][/tex]
Looking at the options given, the correct answer is:
[tex]\[ D. -12x^3 + 28x^2 \][/tex]
We have the expression:
[tex]\[ -4x^2(3x - 7) \][/tex]
To simplify this, we will distribute [tex]\( -4x^2 \)[/tex] to each term inside the parentheses.
1. Distribute [tex]\( -4x^2 \)[/tex] to [tex]\( 3x \)[/tex]:
[tex]\[ -4x^2 \times 3x = -12x^3 \][/tex]
2. Distribute [tex]\( -4x^2 \)[/tex] to [tex]\( -7 \)[/tex]:
[tex]\[ -4x^2 \times -7 = 28x^2 \][/tex]
Now we combine these results:
[tex]\[ -12x^3 + 28x^2 \][/tex]
Thus, the simplified expression is:
[tex]\[ -12x^3 + 28x^2 \][/tex]
Looking at the options given, the correct answer is:
[tex]\[ D. -12x^3 + 28x^2 \][/tex]