College

Select the correct answer.

Points [tex]$A$[/tex] and [tex]$B$[/tex] lie on a circle centered at point [tex]$O$[/tex]. If [tex]$OA = 5$[/tex] and [tex]$\frac{\text{length of } \hat{AB}}{\text{circumference}} = \frac{1}{4}$[/tex], what is the area of sector [tex]$AOB$[/tex]? Use the value [tex]$\pi = 3.14$[/tex], and choose the closest answer.

A. 19.6 square units
B. 39.3 square units
C. 7.85 square units
D. 15.7 square units

Answer :

To find the area of sector [tex]\(AOB\)[/tex] when points [tex]\(A\)[/tex] and [tex]\(B\)[/tex] lie on a circle centered at point [tex]\(O\)[/tex], with [tex]\(OA = 5\)[/tex] and the ratio of the length of arc [tex]\(AB\)[/tex] to the circumference of the circle is [tex]\(\frac{1}{4}\)[/tex], we can follow these steps:

1. Determine the Circumference of the Circle:

The formula for the circumference of a circle is:
[tex]\[
\text{Circumference} = 2 \pi \times \text{radius}
\][/tex]
Given the radius is 5, and [tex]\(\pi = 3.14\)[/tex]:
[tex]\[
\text{Circumference} = 2 \times 3.14 \times 5 = 31.4
\][/tex]

2. Understand the Arc Length Ratio:

The problem states that the length of arc [tex]\(AB\)[/tex] is [tex]\(\frac{1}{4}\)[/tex] of the total circumference. This means:
[tex]\[
\text{Arc Length Ratio} = \frac{\text{length of arc } AB}{\text{circumference}} = \frac{1}{4}
\][/tex]

3. Calculate the Area of Sector [tex]\(AOB\)[/tex]:

The area of the sector is proportional to the length of the arc. Since the arc [tex]\(AB\)[/tex] is [tex]\(\frac{1}{4}\)[/tex] of the circumference, the area of sector [tex]\(AOB\)[/tex] is [tex]\(\frac{1}{4}\)[/tex] of the total area of the circle.

The formula for the area of a circle is:
[tex]\[
\text{Area of Circle} = \pi \times \text{radius}^2
\][/tex]
Plugging in the values:
[tex]\[
\text{Area of Circle} = 3.14 \times 5^2 = 3.14 \times 25 = 78.5
\][/tex]

Therefore, the area of sector [tex]\(AOB\)[/tex] is:
[tex]\[
\text{Area of Sector } AOB = \frac{1}{4} \times 78.5 = 19.625
\][/tex]

After rounding to match the provided options, the area of sector [tex]\(AOB\)[/tex] is closest to:

A. 19.6 square units

Thus, the correct answer is option A, 19.6 square units.