High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Select the correct answer.

Points [tex] A [/tex] and [tex] B [/tex] lie on a circle centered at point [tex] O [/tex]. If [tex] OA = 5 [/tex] and [tex]\frac{\text{length of } \hat{AB}}{\text{circumference}} = \frac{1}{4}[/tex], what is the area of sector [tex] AOB [/tex]? Use the value [tex]\pi = 3.14[/tex], and choose the closest answer.

A. 19.6 square units
B. 39.3 square units
C. 7.85 square units
D. 15.7 square units

Answer :

To find the area of sector [tex]\( AOB \)[/tex], follow these steps:

1. Calculate the circumference of the circle:

The formula for the circumference of a circle is:
[tex]\[
\text{Circumference} = 2 \pi r
\][/tex]
Given [tex]\( r = OA = 5 \)[/tex] and [tex]\(\pi = 3.14\)[/tex], we have:
[tex]\[
\text{Circumference} = 2 \times 3.14 \times 5 = 31.4
\][/tex]

2. Find the length of arc [tex]\( \hat{AB} \)[/tex]:

We know that the length of arc [tex]\( \hat{AB} \)[/tex] is [tex]\(\frac{1}{4}\)[/tex] of the circumference of the circle. Thus:
[tex]\[
\text{Length of arc } \hat{AB} = \frac{1}{4} \times 31.4 = 7.85
\][/tex]

3. Calculate the angle [tex]\( \angle AOB \)[/tex]:

The formula to calculate the angle in degrees for a sector is:
[tex]\[
\text{Angle } \angle AOB = \left(\frac{\text{Length of arc } \hat{AB}}{\text{Circumference}}\right) \times 360
\][/tex]
Plugging in the known values:
[tex]\[
\angle AOB = \left(\frac{7.85}{31.4}\right) \times 360 = 90.0 \text{ degrees}
\][/tex]

4. Calculate the area of sector [tex]\( AOB \)[/tex]:

The formula for the area of a sector is:
[tex]\[
\text{Area of sector} = \left(\frac{\text{Angle}}{360}\right) \times \pi \times r^2
\][/tex]
Substituting the known values:
[tex]\[
\text{Area of sector} = \left(\frac{90}{360}\right) \times 3.14 \times 5^2
\][/tex]
[tex]\[
= \frac{1}{4} \times 3.14 \times 25
\][/tex]
[tex]\[
= 19.625
\][/tex]

The area of sector [tex]\( AOB \)[/tex] is approximately 19.6 square units, which matches closest with option A.