College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Select the correct answer from each drop-down menu.

Review Seth's steps for rewriting and simplifying an expression.

Given: [tex]8x^6 \sqrt{200 x^{13}} \div 2x^5 \sqrt{32 x^7}[/tex]

Step 1: [tex]8x^6 \sqrt{4 \cdot 25 \cdot 2 \cdot (x^6)^2 \cdot x} \div 2x^5 \sqrt{16 \cdot 2 \cdot (x^3)^2 \cdot x}[/tex]

Step 2: [tex]8 \cdot 2 \cdot 5 \cdot x^6 \cdot x^6 \sqrt{2x} \div 2 \cdot 16 \cdot x^5 \cdot x^3 \sqrt{2x}[/tex]

Step 3: [tex]80x^{12} \sqrt{2x} \div 32x^8 \sqrt{2x}[/tex]

Step 4: [tex]\frac{80x^{12} \sqrt{2x}}{32x^8 \sqrt{2x}}[/tex]

Step 5: [tex]\frac{5}{2}x^4[/tex]

Seth's first mistake was made in Step 2, where he [select appropriate correction].

Answer :

Certainly! Let's review Seth's steps and identify where he made a mistake in simplifying the expression:

The original expression provided is:
[tex]\[ 8 x^6 \sqrt{200 x^{13}} \div 2 x^5 \sqrt{32 x^7} \][/tex]

### Step-by-step Solution:

1. Factor Inside the Square Roots:

- Numerator's Square Root, [tex]\(\sqrt{200 x^{13}}\)[/tex]:
- [tex]\(200\)[/tex] can be factored into [tex]\(4 \times 25 \times 2\)[/tex].
- [tex]\(x^{13}\)[/tex] can be rewritten as [tex]\((x^6)^2 \times x\)[/tex].

- Denominator's Square Root, [tex]\(\sqrt{32 x^7}\)[/tex]:
- [tex]\(32\)[/tex] can be factored into [tex]\(16 \times 2\)[/tex].
- [tex]\(x^7\)[/tex] can be rewritten as [tex]\((x^3)^2 \times x\)[/tex].

So the expression becomes:
[tex]\[ 8 x^6 \sqrt{4 \cdot 25 \cdot 2 \cdot (x^6)^2 \cdot x} \div 2 x^5 \sqrt{16 \cdot 2 \cdot (x^3)^2 \cdot x} \][/tex]

2. Simplification of the Square Roots:
- Square root properties can be used: [tex]\(\sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{b}\)[/tex].
- Take the square roots where applicable:
- Numerator: [tex]\(\sqrt{4} = 2\)[/tex], [tex]\(\sqrt{25} = 5\)[/tex], [tex]\(\sqrt{(x^6)^2} = x^6\)[/tex].
- Denominator: [tex]\(\sqrt{16} = 4\)[/tex], [tex]\(\sqrt{(x^3)^2} = x^3\)[/tex].

So the expression should simplify correctly to:
[tex]\[ 8 \cdot 2 \cdot 5 \cdot x^6 \cdot x^6 \sqrt{2x} \div 2 \cdot 4 \cdot x^5 \cdot x^3 \sqrt{2x} \][/tex]

3. Identify and Correct Coefficients Multiplication:

Seth made an error in this step:
- From [tex]\(8 \cdot 2 \cdot 5 = 80\)[/tex].
- From [tex]\(2 \cdot 4 \cdot 2 = 16\)[/tex], but Seth initially wrote incorrectly.

Correct multiplication should have given:
[tex]\[ 80 x^{12} \sqrt{2x} \div 32 x^8 \sqrt{2x} \][/tex]

4. Cancel Common Factors:

- Divide both the coefficients and any like terms using the properties of division:
- [tex]\(\frac{80}{32} = \frac{5}{2}\)[/tex].
- [tex]\(x^{12} \div x^8 = x^4\)[/tex].
- [tex]\(\sqrt{2x}\)[/tex] terms in numerator and denominator cancel out.

This simplifies to:
[tex]\[ \frac{5}{2} x^4 \][/tex]

Thus, Seth's mistake occurred in Step 2 while multiplying the coefficients incorrectly. After correction, the simplified expression is [tex]\(\frac{5}{2} x^4\)[/tex].