Answer :
To find the water pressure at the bottom of the container, we need to use the formula for pressure:
[tex]\[ \text{Pressure} = \frac{\text{Force}}{\text{Area}} \][/tex]
Step 1: Identify the given values
- The total force exerted by the water is 450 newtons.
- The bottom area of the container is 2 square meters.
Step 2: Apply the formula
Using the pressure formula:
[tex]\[ \text{Pressure} = \frac{450 \, \text{newtons}}{2 \, \text{square meters}} = 225 \, \text{Pascals} \][/tex]
Step 3: Convert the pressure to kilopascals
Since 1 kilopascal (kPa) is equal to 1000 Pascals (Pa), we convert the pressure from Pascals to kilopascals:
[tex]\[ 225 \, \text{Pascals} \times 0.001 = 0.225 \, \text{kPa} \][/tex]
Conclusion:
The water pressure at the bottom of the container is [tex]\( 0.225 \, \text{kPa} \)[/tex].
Therefore, the correct answer is:
D. 0.225 kPa
[tex]\[ \text{Pressure} = \frac{\text{Force}}{\text{Area}} \][/tex]
Step 1: Identify the given values
- The total force exerted by the water is 450 newtons.
- The bottom area of the container is 2 square meters.
Step 2: Apply the formula
Using the pressure formula:
[tex]\[ \text{Pressure} = \frac{450 \, \text{newtons}}{2 \, \text{square meters}} = 225 \, \text{Pascals} \][/tex]
Step 3: Convert the pressure to kilopascals
Since 1 kilopascal (kPa) is equal to 1000 Pascals (Pa), we convert the pressure from Pascals to kilopascals:
[tex]\[ 225 \, \text{Pascals} \times 0.001 = 0.225 \, \text{kPa} \][/tex]
Conclusion:
The water pressure at the bottom of the container is [tex]\( 0.225 \, \text{kPa} \)[/tex].
Therefore, the correct answer is:
D. 0.225 kPa