Answer :
Sure, let's simplify the expression step-by-step:
We start with the expression:
[tex]\[
-4x^3y(3x^6 - 9x^4y^5 + 7y^5)
\][/tex]
We'll use the distributive property to remove the parentheses by multiplying [tex]\(-4x^3y\)[/tex] with each term inside the parentheses separately.
1. Multiply [tex]\(-4x^3y\)[/tex] by [tex]\(3x^6\)[/tex]:
[tex]\[
-4x^3y \cdot 3x^6 = -12x^{3+6}y = -12x^9y
\][/tex]
2. Multiply [tex]\(-4x^3y\)[/tex] by [tex]\(-9x^4y^5\)[/tex]:
[tex]\[
-4x^3y \cdot (-9x^4y^5) = 36x^{3+4}y^{1+5} = 36x^7y^6
\][/tex]
3. Multiply [tex]\(-4x^3y\)[/tex] by [tex]\(7y^5\)[/tex]:
[tex]\[
-4x^3y \cdot 7y^5 = -28x^3y^{1+5} = -28x^3y^6
\][/tex]
Now, we combine all the terms:
[tex]\[
-12x^9y + 36x^7y^6 - 28x^3y^6
\][/tex]
This is the simplified expression without parentheses. Each term is simplified by adding the exponents for the same variables. Let me know if you have any questions!
We start with the expression:
[tex]\[
-4x^3y(3x^6 - 9x^4y^5 + 7y^5)
\][/tex]
We'll use the distributive property to remove the parentheses by multiplying [tex]\(-4x^3y\)[/tex] with each term inside the parentheses separately.
1. Multiply [tex]\(-4x^3y\)[/tex] by [tex]\(3x^6\)[/tex]:
[tex]\[
-4x^3y \cdot 3x^6 = -12x^{3+6}y = -12x^9y
\][/tex]
2. Multiply [tex]\(-4x^3y\)[/tex] by [tex]\(-9x^4y^5\)[/tex]:
[tex]\[
-4x^3y \cdot (-9x^4y^5) = 36x^{3+4}y^{1+5} = 36x^7y^6
\][/tex]
3. Multiply [tex]\(-4x^3y\)[/tex] by [tex]\(7y^5\)[/tex]:
[tex]\[
-4x^3y \cdot 7y^5 = -28x^3y^{1+5} = -28x^3y^6
\][/tex]
Now, we combine all the terms:
[tex]\[
-12x^9y + 36x^7y^6 - 28x^3y^6
\][/tex]
This is the simplified expression without parentheses. Each term is simplified by adding the exponents for the same variables. Let me know if you have any questions!