College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ **REAL NUMBERS**

**Question One**

Find the zeros of [tex]$f(x) = x^4 + 4x^2 - 45$[/tex].

**Solution:**

Given [tex]$f(x) = x^4 + 4x^2 - 45$[/tex].

Let [tex]$x^2 = p$[/tex].

Then the equation becomes [tex]$p^2 + 4p - 45 = 0$[/tex].

Factor the quadratic equation.

Solve for [tex]$p$[/tex], then take the square root to find [tex]$x$[/tex].

Answer :

We start with the polynomial
[tex]$$
f(x) = x^4 + 4x^2 - 45.
$$[/tex]

Since the polynomial contains only even powers of [tex]$x$[/tex], we substitute
[tex]$$
p = x^2,
$$[/tex]
so that
[tex]$$
x^4 = p^2.
$$[/tex]
This converts the equation into a quadratic in [tex]$p$[/tex]:
[tex]$$
p^2 + 4p - 45 = 0.
$$[/tex]

To solve for [tex]$p$[/tex], we can use the quadratic formula:
[tex]$$
p = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a},
$$[/tex]
where [tex]$a=1$[/tex], [tex]$b=4$[/tex], and [tex]$c=-45$[/tex]. First, calculate the discriminant:
[tex]$$
\Delta = b^2 - 4ac = 4^2 - 4(1)(-45) = 16 + 180 = 196.
$$[/tex]
Since [tex]$\sqrt{196}=14$[/tex], the formula gives:
[tex]$$
p = \frac{-4 \pm 14}{2}.
$$[/tex]

This leads to two solutions:
1. For the positive sign:
[tex]$$
p = \frac{-4 + 14}{2} = \frac{10}{2} = 5.
$$[/tex]
2. For the negative sign:
[tex]$$
p = \frac{-4 - 14}{2} = \frac{-18}{2} = -9.
$$[/tex]

Recall that [tex]$p = x^2$[/tex]. Now, consider each case:

1. For [tex]$p = 5$[/tex]:
[tex]$$
x^2 = 5 \quad \Longrightarrow \quad x = \sqrt{5} \quad \text{or} \quad x = -\sqrt{5}.
$$[/tex]

2. For [tex]$p = -9$[/tex]:
[tex]$$
x^2 = -9.
$$[/tex]
Since a square can never be negative for a real number, there are no real solutions in this case. (The solutions would be complex: [tex]$x=3i$[/tex] and [tex]$x=-3i$[/tex], but we are only considering real zeros.)

Thus, the real zeros of the function are:
[tex]$$
x = \sqrt{5} \quad \text{and} \quad x = -\sqrt{5}.
$$[/tex]