Answer :
Sure! Let's solve this step by step to find out which expression has an estimated product of 45.
### Step-by-Step Solution:
1. Evaluate each expression:
- Expression 1: [tex]\(44.7 \times 2.1\)[/tex]
[tex]\[
44.7 \times 2.1 = 93.87
\][/tex]
If we round this value, we get 94.
- Expression 2: [tex]\(7.5 \times 8.4\)[/tex]
[tex]\[
7.5 \times 8.4 = 63.0
\][/tex]
If we round this value, we get 63.
- Expression 3: [tex]\(8.7 \times 5.28\)[/tex]
[tex]\[
8.7 \times 5.28 = 45.936
\][/tex]
If we round this value, we get 46.
- Expression 4: [tex]\(38.1 \times 7.3\)[/tex]
[tex]\[
38.1 \times 7.3 = 278.13
\][/tex]
If we round this value, we get 278.
2. Compare the rounded results:
- [tex]\(44.7 \times 2.1\)[/tex] rounds to 94
- [tex]\(7.5 \times 8.4\)[/tex] rounds to 63
- [tex]\(8.7 \times 5.28\)[/tex] rounds to 46
- [tex]\(38.1 \times 7.3\)[/tex] rounds to 278
3. Identify the result closest to 45:
We have the values 94, 63, 46, and 278. Among these, 46 is the closest to 45.
4. Conclusion:
The expression that has an estimated product of 45 is:
[tex]\[
\boxed{8.7 \times 5.28}
\][/tex]
This detailed step-by-step process helps us understand that [tex]\(8.7 \times 5.28\)[/tex] yields the closest product to 45 when estimated.
### Step-by-Step Solution:
1. Evaluate each expression:
- Expression 1: [tex]\(44.7 \times 2.1\)[/tex]
[tex]\[
44.7 \times 2.1 = 93.87
\][/tex]
If we round this value, we get 94.
- Expression 2: [tex]\(7.5 \times 8.4\)[/tex]
[tex]\[
7.5 \times 8.4 = 63.0
\][/tex]
If we round this value, we get 63.
- Expression 3: [tex]\(8.7 \times 5.28\)[/tex]
[tex]\[
8.7 \times 5.28 = 45.936
\][/tex]
If we round this value, we get 46.
- Expression 4: [tex]\(38.1 \times 7.3\)[/tex]
[tex]\[
38.1 \times 7.3 = 278.13
\][/tex]
If we round this value, we get 278.
2. Compare the rounded results:
- [tex]\(44.7 \times 2.1\)[/tex] rounds to 94
- [tex]\(7.5 \times 8.4\)[/tex] rounds to 63
- [tex]\(8.7 \times 5.28\)[/tex] rounds to 46
- [tex]\(38.1 \times 7.3\)[/tex] rounds to 278
3. Identify the result closest to 45:
We have the values 94, 63, 46, and 278. Among these, 46 is the closest to 45.
4. Conclusion:
The expression that has an estimated product of 45 is:
[tex]\[
\boxed{8.7 \times 5.28}
\][/tex]
This detailed step-by-step process helps us understand that [tex]\(8.7 \times 5.28\)[/tex] yields the closest product to 45 when estimated.