High School

**Question 4:**

If 5.00 L of hydrogen at [tex]15^{\circ} C[/tex] and 98.5 kPa are needed, how many grams of aluminum metal must react with excess sodium hydroxide? The other product is sodium aluminate, [tex]Na_3AlO_3[/tex].

**Given Data:**

- Pressure: 98.5 kPa
- Temperature: [tex]15^{\circ} C[/tex]
- Volume: 5.00 L
- Conversion: [tex]1 \text{ atm} = 98.5 \text{ kPa}[/tex]
- [tex]P = 0.972 \text{ atm}[/tex]
- [tex]R = 0.0821 \, \text{L atm/mol K}[/tex]
- [tex]T = 288 \text{ K}[/tex]

---

**Additional Question:**

Steam reacts with iron to produce hydrogen gas and [tex]Fe_3O_4[/tex]. What volume of hydrogen at STP could be produced from 60.0 L of steam, at [tex]200^{\circ} C[/tex] and 85.3 kPa, with an excess of iron?

Answer :

Sure! Let's solve the problem step-by-step.

### Step 1: Understand the Chemical Reaction

The reaction given involves aluminum (Al) reacting with sodium hydroxide (NaOH) to produce hydrogen gas (H₂) and sodium aluminate (Na₃AlO₃). The balanced chemical equation is:

[tex]\[ 2\text{Al} + 6\text{NaOH} \rightarrow 2\text{Na}_3\text{AlO}_3 + 3\text{H}_2 \][/tex]

### Step 2: Use Ideal Gas Law to Find Moles of Hydrogen

We need to find how many moles of hydrogen gas are produced. We'll use the Ideal Gas Law:

[tex]\[ PV = nRT \][/tex]

Where:
- [tex]\( P \)[/tex] is the pressure in atmospheres (atm),
- [tex]\( V \)[/tex] is the volume in liters (L),
- [tex]\( n \)[/tex] is the number of moles,
- [tex]\( R \)[/tex] is the universal gas constant ([tex]\( 0.0821 \, \text{L atm/mol K} \)[/tex]),
- [tex]\( T \)[/tex] is the temperature in Kelvin (K).

Given data:
- Pressure [tex]\( P = 98.5 \, \text{kPa} \)[/tex]. First, convert this to atm: [tex]\( P = 98.5 \, \text{kPa} \times \frac{1 \, \text{atm}}{101.325 \, \text{kPa}} \approx 0.972 \, \text{atm} \)[/tex].
- Volume [tex]\( V = 5.00 \, \text{L} \)[/tex].
- Temperature [tex]\( T = 15^{\circ}\text{C} = 15 + 273.15 = 288.15 \, \text{K} \)[/tex].

Plug these values into the Ideal Gas Law to find [tex]\( n \)[/tex]:

[tex]\[ n = \frac{PV}{RT} = \frac{(0.972 \, \text{atm})(5.00 \, \text{L})}{(0.0821 \, \text{L atm/mol K})(288.15 \, \text{K})} \approx 0.205 \, \text{mol} \][/tex]

### Step 3: Use Stoichiometry to Find Moles of Aluminum

From the balanced equation, we see that 2 moles of aluminum produce 3 moles of hydrogen gas. We can set up a ratio to find moles of aluminum needed:

[tex]\[
\frac{2 \, \text{moles of Al}}{3 \, \text{moles of H}_2} \times 0.205 \, \text{mol H}_2 \approx 0.137 \, \text{mol Al}
\][/tex]

### Step 4: Convert Moles of Aluminum to Grams

Finally, use the molar mass of aluminum (Al), which is [tex]\( 26.98 \, \text{g/mol} \)[/tex], to convert moles to grams:

[tex]\[
0.137 \, \text{mol Al} \times 26.98 \, \text{g/mol} \approx 3.70 \, \text{g Al}
\][/tex]

Therefore, approximately 3.70 grams of aluminum are needed to produce 5.00 liters of hydrogen gas under the given conditions.