Answer :
To simplify the given expression [tex]\(3x^3 + x^2 + 2(x^3 - 4x^2)\)[/tex], let's proceed step-by-step:
1. Distribute the 2 inside the parentheses:
[tex]\[
3x^3 + x^2 + 2(x^3 - 4x^2) = 3x^3 + x^2 + 2x^3 - 8x^2
\][/tex]
2. Combine like terms:
- First, combine the [tex]\(x^3\)[/tex] terms:
[tex]\[
3x^3 + 2x^3 = 5x^3
\][/tex]
- Next, combine the [tex]\(x^2\)[/tex] terms:
[tex]\[
x^2 - 8x^2 = -7x^2
\][/tex]
3. Put it all together:
[tex]\[
3x^3 + x^2 + 2x^3 - 8x^2 = 5x^3 - 7x^2
\][/tex]
So, the simplest form of the expression is:
[tex]\[
5x^3 - 7x^2
\][/tex]
Therefore, the correct answer is:
C. [tex]\(5x^3 - 7x^2\)[/tex]
1. Distribute the 2 inside the parentheses:
[tex]\[
3x^3 + x^2 + 2(x^3 - 4x^2) = 3x^3 + x^2 + 2x^3 - 8x^2
\][/tex]
2. Combine like terms:
- First, combine the [tex]\(x^3\)[/tex] terms:
[tex]\[
3x^3 + 2x^3 = 5x^3
\][/tex]
- Next, combine the [tex]\(x^2\)[/tex] terms:
[tex]\[
x^2 - 8x^2 = -7x^2
\][/tex]
3. Put it all together:
[tex]\[
3x^3 + x^2 + 2x^3 - 8x^2 = 5x^3 - 7x^2
\][/tex]
So, the simplest form of the expression is:
[tex]\[
5x^3 - 7x^2
\][/tex]
Therefore, the correct answer is:
C. [tex]\(5x^3 - 7x^2\)[/tex]