Answer :
Let's sort these numbers from smallest to largest by converting each to its numerical value and comparing them.
1. [tex]\( 3.55 \times 10^4 \)[/tex]: This is equal to 35,500.
2. [tex]\( 3.53 \times 10^3 \)[/tex]: This is equal to 3,530.
3. [tex]\( 354 \times 10^2 \)[/tex]: First, calculate [tex]\( 354 \times 100 = 35,400 \)[/tex].
4. [tex]\( 35.9 \times 10^3 \)[/tex]: This is equal to 35,900.
Now let's list the actual numerical values:
- [tex]\( 3,530 \)[/tex]
- [tex]\( 35,400 \)[/tex]
- [tex]\( 35,500 \)[/tex]
- [tex]\( 35,900 \)[/tex]
Ordering the numbers from smallest to largest:
1. [tex]\( 3,530 \)[/tex] (from [tex]\( 3.53 \times 10^3 \)[/tex])
2. [tex]\( 35,400 \)[/tex] (from [tex]\( 354 \times 10^2 \)[/tex])
3. [tex]\( 35,500 \)[/tex] (from [tex]\( 3.55 \times 10^4 \)[/tex])
4. [tex]\( 35,900 \)[/tex] (from [tex]\( 35.9 \times 10^3 \)[/tex])
In conclusion, the numbers in order from smallest to largest are:
[tex]\( 3.53 \times 10^3 \)[/tex], [tex]\( 354 \times 10^2 \)[/tex], [tex]\( 3.55 \times 10^4 \)[/tex], [tex]\( 35.9 \times 10^3 \)[/tex].
1. [tex]\( 3.55 \times 10^4 \)[/tex]: This is equal to 35,500.
2. [tex]\( 3.53 \times 10^3 \)[/tex]: This is equal to 3,530.
3. [tex]\( 354 \times 10^2 \)[/tex]: First, calculate [tex]\( 354 \times 100 = 35,400 \)[/tex].
4. [tex]\( 35.9 \times 10^3 \)[/tex]: This is equal to 35,900.
Now let's list the actual numerical values:
- [tex]\( 3,530 \)[/tex]
- [tex]\( 35,400 \)[/tex]
- [tex]\( 35,500 \)[/tex]
- [tex]\( 35,900 \)[/tex]
Ordering the numbers from smallest to largest:
1. [tex]\( 3,530 \)[/tex] (from [tex]\( 3.53 \times 10^3 \)[/tex])
2. [tex]\( 35,400 \)[/tex] (from [tex]\( 354 \times 10^2 \)[/tex])
3. [tex]\( 35,500 \)[/tex] (from [tex]\( 3.55 \times 10^4 \)[/tex])
4. [tex]\( 35,900 \)[/tex] (from [tex]\( 35.9 \times 10^3 \)[/tex])
In conclusion, the numbers in order from smallest to largest are:
[tex]\( 3.53 \times 10^3 \)[/tex], [tex]\( 354 \times 10^2 \)[/tex], [tex]\( 3.55 \times 10^4 \)[/tex], [tex]\( 35.9 \times 10^3 \)[/tex].