Answer :
To determine the order from greatest to least for the given numbers, we first need to compare their values. Let's convert each number into decimals for easy comparison:
1. The decimal number is already in decimal form: [tex]\( 0.5312 \)[/tex].
2. We need to convert [tex]\( 0.1\% \)[/tex] to a decimal. To do this, remember that a percent means per hundred. So:
[tex]\[
0.1\% = \frac{0.1}{100} = 0.001
\][/tex]
3. Convert the fraction [tex]\( \frac{18}{20} \)[/tex] to a decimal. Divide the numerator by the denominator:
[tex]\[
\frac{18}{20} = 0.9
\][/tex]
4. Convert the fraction [tex]\( \frac{22}{25} \)[/tex] to a decimal. Divide the numerator by the denominator:
[tex]\[
\frac{22}{25} = 0.88
\][/tex]
Now, list these decimal values and arrange them from greatest to least:
- [tex]\( 0.9 \)[/tex]
- [tex]\( 0.88 \)[/tex]
- [tex]\( 0.5312 \)[/tex]
- [tex]\( 0.001 \)[/tex]
So, the order from greatest to least is:
[tex]\[
\frac{18}{20}, \frac{22}{25}, 0.5312, 0.1\%
\][/tex]
1. The decimal number is already in decimal form: [tex]\( 0.5312 \)[/tex].
2. We need to convert [tex]\( 0.1\% \)[/tex] to a decimal. To do this, remember that a percent means per hundred. So:
[tex]\[
0.1\% = \frac{0.1}{100} = 0.001
\][/tex]
3. Convert the fraction [tex]\( \frac{18}{20} \)[/tex] to a decimal. Divide the numerator by the denominator:
[tex]\[
\frac{18}{20} = 0.9
\][/tex]
4. Convert the fraction [tex]\( \frac{22}{25} \)[/tex] to a decimal. Divide the numerator by the denominator:
[tex]\[
\frac{22}{25} = 0.88
\][/tex]
Now, list these decimal values and arrange them from greatest to least:
- [tex]\( 0.9 \)[/tex]
- [tex]\( 0.88 \)[/tex]
- [tex]\( 0.5312 \)[/tex]
- [tex]\( 0.001 \)[/tex]
So, the order from greatest to least is:
[tex]\[
\frac{18}{20}, \frac{22}{25}, 0.5312, 0.1\%
\][/tex]