The remainder in the synthetic division problem is 7.
To find the remainder using synthetic division, follow these steps:
Step 1: Write the coefficients of the polynomial in descending order, including placeholders for missing terms. In this case, the polynomial is given as:
[tex]1x^3 + 2x^2 - 3x + 1[/tex]
Step 2: Since we are dividing by (x + 2), change the sign of the divisor and set it equal to zero to find the value we'll use in the synthetic division.
x + 2 = 0
x = -2
Step 3: Set up the synthetic division table:
-2 | 1 2 -3 1
Step 4: Perform the synthetic division:
Bring down the first coefficient: 1
Multiply -2 by 1: -2
Add the result to the next coefficient: 2 - 2 = 0
Multiply -2 by 0: 0
Add the result to the next coefficient: -3 + 0 = -3
Multiply -2 by -3: 6
Add the result to the next coefficient: 1 + 6 = 7
Step 5: The last entry in the synthetic division row (7 in this case) is the remainder.
The remainder in the synthetic division problem is 7.
To know more about synthetic division, refer here:
https://brainly.com/question/29146605
#SPJ2