Answer :
Sure, I can help you with that! Let's order the given numbers from least to greatest.
Given numbers are:
- [tex]\( 3.85 \)[/tex]
- [tex]\( -0.\overline{6} \)[/tex]
- [tex]\( -\frac{34}{50} \)[/tex]
- [tex]\( \sqrt{14} \)[/tex]
First, let's convert all these numbers into decimal form for easier comparison.
1. [tex]\( 3.85 \)[/tex] is already in decimal form.
2. [tex]\( -0.\overline{6} \)[/tex] is a repeating decimal. This means it is equal to [tex]\( -0.666666... \)[/tex]
3. Convert [tex]\( -\frac{34}{50} \)[/tex] to a decimal:
[tex]\[
-\frac{34}{50} = -0.68
\][/tex]
4. Calculate [tex]\( \sqrt{14} \)[/tex]:
[tex]\[
\sqrt{14} \approx 3.7417
\][/tex]
Now, list the numbers in their decimal forms:
- [tex]\( 3.85 \)[/tex]
- [tex]\( -0.6666... \)[/tex]
- [tex]\( -0.68 \)[/tex]
- [tex]\( \approx 3.7417 \)[/tex]
To order these numbers, let's compare them:
1. [tex]\( -0.68 \)[/tex] is less than [tex]\( -0.6666... \)[/tex]
2. [tex]\( -0.6666... \)[/tex] is less than [tex]\( 3.7417 \)[/tex]
3. [tex]\( 3.7417 \)[/tex] is less than [tex]\( 3.85 \)[/tex]
So, ordering these numbers from least to greatest, we get:
- [tex]\( -0.68 \)[/tex]
- [tex]\( -0.6666... \)[/tex] (which is [tex]\( -0.\overline{6} \)[/tex] )
- [tex]\( \approx \sqrt{14} \)[/tex]
- [tex]\( 3.85 \)[/tex]
Therefore, the numbers in order from least to greatest are:
[tex]\[
-\frac{34}{50}, -0.\overline{6}, \sqrt{14}, 3.85
\][/tex]
Given numbers are:
- [tex]\( 3.85 \)[/tex]
- [tex]\( -0.\overline{6} \)[/tex]
- [tex]\( -\frac{34}{50} \)[/tex]
- [tex]\( \sqrt{14} \)[/tex]
First, let's convert all these numbers into decimal form for easier comparison.
1. [tex]\( 3.85 \)[/tex] is already in decimal form.
2. [tex]\( -0.\overline{6} \)[/tex] is a repeating decimal. This means it is equal to [tex]\( -0.666666... \)[/tex]
3. Convert [tex]\( -\frac{34}{50} \)[/tex] to a decimal:
[tex]\[
-\frac{34}{50} = -0.68
\][/tex]
4. Calculate [tex]\( \sqrt{14} \)[/tex]:
[tex]\[
\sqrt{14} \approx 3.7417
\][/tex]
Now, list the numbers in their decimal forms:
- [tex]\( 3.85 \)[/tex]
- [tex]\( -0.6666... \)[/tex]
- [tex]\( -0.68 \)[/tex]
- [tex]\( \approx 3.7417 \)[/tex]
To order these numbers, let's compare them:
1. [tex]\( -0.68 \)[/tex] is less than [tex]\( -0.6666... \)[/tex]
2. [tex]\( -0.6666... \)[/tex] is less than [tex]\( 3.7417 \)[/tex]
3. [tex]\( 3.7417 \)[/tex] is less than [tex]\( 3.85 \)[/tex]
So, ordering these numbers from least to greatest, we get:
- [tex]\( -0.68 \)[/tex]
- [tex]\( -0.6666... \)[/tex] (which is [tex]\( -0.\overline{6} \)[/tex] )
- [tex]\( \approx \sqrt{14} \)[/tex]
- [tex]\( 3.85 \)[/tex]
Therefore, the numbers in order from least to greatest are:
[tex]\[
-\frac{34}{50}, -0.\overline{6}, \sqrt{14}, 3.85
\][/tex]