Answer :
To solve this question, we need to understand what the function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex] actually does. This function is used to convert a temperature from degrees Fahrenheit to degrees Celsius.
Let's break down the question and the function:
1. Function Understanding: The function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex] implies that when you input a Fahrenheit temperature into this function, it calculates and outputs the equivalent temperature in degrees Celsius.
2. Given Temperature: We want to find out what [tex]\( C(76.1) \)[/tex] represents. This means we take the Fahrenheit temperature of 76.1 and convert it to Celsius using the function.
3. Converting Temperature:
- The temperature in Fahrenheit is 76.1 degrees.
- Apply the formula: [tex]\( C = \frac{5}{9}(F - 32) \)[/tex].
- Substitute 76.1 for [tex]\( F \)[/tex]: [tex]\( C = \frac{5}{9}(76.1 - 32) \)[/tex].
4. Calculation:
- First, subtract 32 from 76.1: [tex]\( 76.1 - 32 = 44.1 \)[/tex].
- Then, multiply the result by [tex]\( \frac{5}{9} \)[/tex]: [tex]\( \frac{5}{9} \times 44.1 \)[/tex] gives you the temperature in Celsius.
5. Result: The conversion results in approximately 24.5 degrees Celsius.
Therefore, [tex]\( C(76.1) \)[/tex] represents the temperature of 76.1 degrees Fahrenheit converted into degrees Celsius.
Let's break down the question and the function:
1. Function Understanding: The function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex] implies that when you input a Fahrenheit temperature into this function, it calculates and outputs the equivalent temperature in degrees Celsius.
2. Given Temperature: We want to find out what [tex]\( C(76.1) \)[/tex] represents. This means we take the Fahrenheit temperature of 76.1 and convert it to Celsius using the function.
3. Converting Temperature:
- The temperature in Fahrenheit is 76.1 degrees.
- Apply the formula: [tex]\( C = \frac{5}{9}(F - 32) \)[/tex].
- Substitute 76.1 for [tex]\( F \)[/tex]: [tex]\( C = \frac{5}{9}(76.1 - 32) \)[/tex].
4. Calculation:
- First, subtract 32 from 76.1: [tex]\( 76.1 - 32 = 44.1 \)[/tex].
- Then, multiply the result by [tex]\( \frac{5}{9} \)[/tex]: [tex]\( \frac{5}{9} \times 44.1 \)[/tex] gives you the temperature in Celsius.
5. Result: The conversion results in approximately 24.5 degrees Celsius.
Therefore, [tex]\( C(76.1) \)[/tex] represents the temperature of 76.1 degrees Fahrenheit converted into degrees Celsius.