High School

On his first day of school, Kareem found the high temperature in degrees Fahrenheit to be [tex]$76.1^{\circ}$[/tex]. He plans to use the function [tex]$C(F)=\frac{5}{9}(F-32)$[/tex] to convert this temperature from degrees Fahrenheit to degrees Celsius.

What does [tex]$C(76.1)$[/tex] represent?

A. The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.
B. The temperature of 76.1 degrees Celsius converted to degrees Fahrenheit.
C. The amount of time it takes a temperature of 76.1 degrees Fahrenheit to be converted to 32 degrees Celsius.
D. The amount of time it takes a temperature of 76.1 degrees Celsius to be converted to 32 degrees Fahrenheit.

Answer :

We are given the conversion function

[tex]$$
C(F) = \frac{5}{9}(F - 32)
$$[/tex]

which converts a temperature from degrees Fahrenheit ([tex]$F$[/tex]) to degrees Celsius.

Step 1: Identify the temperature in Fahrenheit.
Kareem's temperature is [tex]$76.1^\circ$[/tex]F.

Step 2: Substitute [tex]$F = 76.1$[/tex] into the function.

[tex]$$
C(76.1) = \frac{5}{9}(76.1 - 32)
$$[/tex]

Step 3: Calculate the difference inside the parentheses.

[tex]$$
76.1 - 32 = 44.1
$$[/tex]

Step 4: Multiply by [tex]$\frac{5}{9}$[/tex].

[tex]$$
C(76.1) = \frac{5}{9} \times 44.1 \approx 24.5
$$[/tex]

This result, [tex]$C(76.1)$[/tex], is the temperature in degrees Celsius that corresponds to [tex]$76.1^\circ$[/tex]F.

Conclusion:
[tex]$$
C(76.1) \text{ represents the temperature of } 76.1^\circ \text{F converted to degrees Celsius.}
$$[/tex]

Thus, the answer is:

the temperature of [tex]$76.1^\circ$[/tex]F converted to degrees Celsius.