Answer :
We are given the conversion function
[tex]$$
C(F) = \frac{5}{9}(F - 32)
$$[/tex]
which converts a temperature from degrees Fahrenheit ([tex]$F$[/tex]) to degrees Celsius.
Step 1: Identify the temperature in Fahrenheit.
Kareem's temperature is [tex]$76.1^\circ$[/tex]F.
Step 2: Substitute [tex]$F = 76.1$[/tex] into the function.
[tex]$$
C(76.1) = \frac{5}{9}(76.1 - 32)
$$[/tex]
Step 3: Calculate the difference inside the parentheses.
[tex]$$
76.1 - 32 = 44.1
$$[/tex]
Step 4: Multiply by [tex]$\frac{5}{9}$[/tex].
[tex]$$
C(76.1) = \frac{5}{9} \times 44.1 \approx 24.5
$$[/tex]
This result, [tex]$C(76.1)$[/tex], is the temperature in degrees Celsius that corresponds to [tex]$76.1^\circ$[/tex]F.
Conclusion:
[tex]$$
C(76.1) \text{ represents the temperature of } 76.1^\circ \text{F converted to degrees Celsius.}
$$[/tex]
Thus, the answer is:
the temperature of [tex]$76.1^\circ$[/tex]F converted to degrees Celsius.
[tex]$$
C(F) = \frac{5}{9}(F - 32)
$$[/tex]
which converts a temperature from degrees Fahrenheit ([tex]$F$[/tex]) to degrees Celsius.
Step 1: Identify the temperature in Fahrenheit.
Kareem's temperature is [tex]$76.1^\circ$[/tex]F.
Step 2: Substitute [tex]$F = 76.1$[/tex] into the function.
[tex]$$
C(76.1) = \frac{5}{9}(76.1 - 32)
$$[/tex]
Step 3: Calculate the difference inside the parentheses.
[tex]$$
76.1 - 32 = 44.1
$$[/tex]
Step 4: Multiply by [tex]$\frac{5}{9}$[/tex].
[tex]$$
C(76.1) = \frac{5}{9} \times 44.1 \approx 24.5
$$[/tex]
This result, [tex]$C(76.1)$[/tex], is the temperature in degrees Celsius that corresponds to [tex]$76.1^\circ$[/tex]F.
Conclusion:
[tex]$$
C(76.1) \text{ represents the temperature of } 76.1^\circ \text{F converted to degrees Celsius.}
$$[/tex]
Thus, the answer is:
the temperature of [tex]$76.1^\circ$[/tex]F converted to degrees Celsius.