High School

On his first day of school, Kareem found the high temperature in degrees Fahrenheit to be [tex]76.1^{\circ}[/tex]. He plans to use the function [tex]C(F)=\frac{5}{9}(F-32)[/tex] to convert this temperature from degrees Fahrenheit to degrees Celsius.

What does [tex]C(76.1)[/tex] represent?

A. The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.
B. The temperature of 76.1 degrees Celsius converted to degrees Fahrenheit.
C. The amount of time it takes a temperature of 76.1 degrees Fahrenheit to be converted to 32 degrees Celsius.
D. The amount of time it takes a temperature of 76.1 degrees Celsius to be converted to 32 degrees Fahrenheit.

Answer :

We start by noting that the function

[tex]$$
C(F) = \frac{5}{9}(F - 32)
$$[/tex]

converts a temperature given in degrees Fahrenheit to degrees Celsius.

1. First, we set the Fahrenheit temperature to [tex]$76.1^\circ$[/tex]F.

2. Next, subtract [tex]$32$[/tex] from the given temperature:

[tex]$$
76.1 - 32 = 44.1.
$$[/tex]

3. Then, multiply by [tex]$\frac{5}{9}$[/tex] to complete the conversion:

[tex]$$
C(76.1) = \frac{5}{9} \times 44.1 \approx 24.5.
$$[/tex]

Thus, [tex]$C(76.1)$[/tex] represents the temperature of [tex]$76.1^\circ$[/tex]F when converted to degrees Celsius, which is approximately [tex]$24.5^\circ$[/tex]C.

The correct answer is: the temperature of [tex]$76.1$[/tex] degrees Fahrenheit converted to degrees Celsius.