Answer :
We start by noting that the function
[tex]$$
C(F) = \frac{5}{9}(F - 32)
$$[/tex]
converts a temperature given in degrees Fahrenheit to degrees Celsius.
1. First, we set the Fahrenheit temperature to [tex]$76.1^\circ$[/tex]F.
2. Next, subtract [tex]$32$[/tex] from the given temperature:
[tex]$$
76.1 - 32 = 44.1.
$$[/tex]
3. Then, multiply by [tex]$\frac{5}{9}$[/tex] to complete the conversion:
[tex]$$
C(76.1) = \frac{5}{9} \times 44.1 \approx 24.5.
$$[/tex]
Thus, [tex]$C(76.1)$[/tex] represents the temperature of [tex]$76.1^\circ$[/tex]F when converted to degrees Celsius, which is approximately [tex]$24.5^\circ$[/tex]C.
The correct answer is: the temperature of [tex]$76.1$[/tex] degrees Fahrenheit converted to degrees Celsius.
[tex]$$
C(F) = \frac{5}{9}(F - 32)
$$[/tex]
converts a temperature given in degrees Fahrenheit to degrees Celsius.
1. First, we set the Fahrenheit temperature to [tex]$76.1^\circ$[/tex]F.
2. Next, subtract [tex]$32$[/tex] from the given temperature:
[tex]$$
76.1 - 32 = 44.1.
$$[/tex]
3. Then, multiply by [tex]$\frac{5}{9}$[/tex] to complete the conversion:
[tex]$$
C(76.1) = \frac{5}{9} \times 44.1 \approx 24.5.
$$[/tex]
Thus, [tex]$C(76.1)$[/tex] represents the temperature of [tex]$76.1^\circ$[/tex]F when converted to degrees Celsius, which is approximately [tex]$24.5^\circ$[/tex]C.
The correct answer is: the temperature of [tex]$76.1$[/tex] degrees Fahrenheit converted to degrees Celsius.