Answer :
We are given the conversion function
[tex]$$
C(F) = \frac{5}{9}(F - 32)
$$[/tex]
where [tex]$F$[/tex] represents the temperature in degrees Fahrenheit, and [tex]$C(F)$[/tex] gives the equivalent temperature in degrees Celsius.
To find [tex]$C(76.1)$[/tex] when [tex]$F = 76.1$[/tex] degrees, follow these steps:
1. Substitute [tex]$F = 76.1$[/tex] into the function:
[tex]$$
C(76.1) = \frac{5}{9}(76.1 - 32)
$$[/tex]
2. Calculate the difference inside the parentheses:
[tex]$$
76.1 - 32 = 44.1
$$[/tex]
3. Multiply the result by [tex]$\frac{5}{9}$[/tex]:
[tex]$$
C(76.1) = \frac{5}{9} \times 44.1 \approx 24.5
$$[/tex]
Thus, [tex]$C(76.1)$[/tex] represents the temperature in degrees Celsius obtained by converting 76.1 degrees Fahrenheit.
Therefore, the correct interpretation is:
[tex]$$\text{the temperature of } 76.1^\circ \text{F converted to degrees Celsius.}$$[/tex]
[tex]$$
C(F) = \frac{5}{9}(F - 32)
$$[/tex]
where [tex]$F$[/tex] represents the temperature in degrees Fahrenheit, and [tex]$C(F)$[/tex] gives the equivalent temperature in degrees Celsius.
To find [tex]$C(76.1)$[/tex] when [tex]$F = 76.1$[/tex] degrees, follow these steps:
1. Substitute [tex]$F = 76.1$[/tex] into the function:
[tex]$$
C(76.1) = \frac{5}{9}(76.1 - 32)
$$[/tex]
2. Calculate the difference inside the parentheses:
[tex]$$
76.1 - 32 = 44.1
$$[/tex]
3. Multiply the result by [tex]$\frac{5}{9}$[/tex]:
[tex]$$
C(76.1) = \frac{5}{9} \times 44.1 \approx 24.5
$$[/tex]
Thus, [tex]$C(76.1)$[/tex] represents the temperature in degrees Celsius obtained by converting 76.1 degrees Fahrenheit.
Therefore, the correct interpretation is:
[tex]$$\text{the temperature of } 76.1^\circ \text{F converted to degrees Celsius.}$$[/tex]