College

On his first day of school, Kareem found the high temperature in degrees Fahrenheit to be [tex]76.1^{\circ}[/tex]. He plans to use the function [tex]C(F)=\frac{5}{9}(F-32)[/tex] to convert this temperature from degrees Fahrenheit to degrees Celsius.

What does [tex]C(76.1)[/tex] represent?

A. The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.

B. The temperature of 76.1 degrees Celsius converted to degrees Fahrenheit.

C. The amount of time it takes a temperature of 76.1 degrees Fahrenheit to be converted to 32 degrees Celsius.

D. The amount of time it takes a temperature of 76.1 degrees Celsius to be converted to 32 degrees Fahrenheit.

Answer :

We are given the conversion function

[tex]$$
C(F) = \frac{5}{9}(F - 32)
$$[/tex]

where [tex]$F$[/tex] represents the temperature in degrees Fahrenheit, and [tex]$C(F)$[/tex] gives the equivalent temperature in degrees Celsius.

To find [tex]$C(76.1)$[/tex] when [tex]$F = 76.1$[/tex] degrees, follow these steps:

1. Substitute [tex]$F = 76.1$[/tex] into the function:

[tex]$$
C(76.1) = \frac{5}{9}(76.1 - 32)
$$[/tex]

2. Calculate the difference inside the parentheses:

[tex]$$
76.1 - 32 = 44.1
$$[/tex]

3. Multiply the result by [tex]$\frac{5}{9}$[/tex]:

[tex]$$
C(76.1) = \frac{5}{9} \times 44.1 \approx 24.5
$$[/tex]

Thus, [tex]$C(76.1)$[/tex] represents the temperature in degrees Celsius obtained by converting 76.1 degrees Fahrenheit.

Therefore, the correct interpretation is:

[tex]$$\text{the temperature of } 76.1^\circ \text{F converted to degrees Celsius.}$$[/tex]