Answer :
Certainly! Let's break down the problem and understand what [tex]\( C(76.1) \)[/tex] represents when using the function provided.
1. Understanding the Function: The function given, [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex], is used to convert a temperature from degrees Fahrenheit to degrees Celsius. Here, [tex]\( F \)[/tex] stands for the temperature in Fahrenheit.
2. Substituting the Value: We need to find [tex]\( C(76.1) \)[/tex]. This involves substituting 76.1 for [tex]\( F \)[/tex] in the function. So, we calculate:
[tex]\[
C(76.1) = \frac{5}{9}(76.1 - 32)
\][/tex]
3. Performing the Calculation:
- First, subtract 32 from 76.1:
[tex]\[
76.1 - 32 = 44.1
\][/tex]
- Next, multiply the result by [tex]\(\frac{5}{9}\)[/tex]:
[tex]\[
\frac{5}{9} \times 44.1 \approx 24.5
\][/tex]
4. Interpreting the Result: The result, approximately 24.5, represents the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.
Therefore, [tex]\( C(76.1) \)[/tex] represents the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.
1. Understanding the Function: The function given, [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex], is used to convert a temperature from degrees Fahrenheit to degrees Celsius. Here, [tex]\( F \)[/tex] stands for the temperature in Fahrenheit.
2. Substituting the Value: We need to find [tex]\( C(76.1) \)[/tex]. This involves substituting 76.1 for [tex]\( F \)[/tex] in the function. So, we calculate:
[tex]\[
C(76.1) = \frac{5}{9}(76.1 - 32)
\][/tex]
3. Performing the Calculation:
- First, subtract 32 from 76.1:
[tex]\[
76.1 - 32 = 44.1
\][/tex]
- Next, multiply the result by [tex]\(\frac{5}{9}\)[/tex]:
[tex]\[
\frac{5}{9} \times 44.1 \approx 24.5
\][/tex]
4. Interpreting the Result: The result, approximately 24.5, represents the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.
Therefore, [tex]\( C(76.1) \)[/tex] represents the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.