College

On his first day of school, Kareem found the high temperature in degrees Fahrenheit to be [tex]76.1^{\circ}[/tex]. He plans to use the function [tex]C(F) = \frac{5}{9}(F-32)[/tex] to convert this temperature from degrees Fahrenheit to degrees Celsius.

What does [tex]C(76.1)[/tex] represent?

A. The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.

B. The temperature of 76.1 degrees Celsius converted to degrees Fahrenheit.

C. The amount of time it takes a temperature of 76.1 degrees Fahrenheit to be converted to 32 degrees Celsius.

D. The amount of time it takes a temperature of 76.1 degrees Celsius to be converted to 32 degrees Fahrenheit.

Answer :

Sure! Let's walk through what the function [tex]\( C(A) = \frac{5}{9}(F - 32) \)[/tex] is doing.

The function [tex]\( C(A) \)[/tex] is used to convert temperatures from degrees Fahrenheit to degrees Celsius. In the context of the question:

1. Input Value: Kareem starts with a temperature of [tex]\( 76.1^\circ \)[/tex] Fahrenheit.

2. Function Purpose: The function [tex]\( C(A) \)[/tex] is applied to this Fahrenheit temperature to find out what it is in degrees Celsius.

3. Interpretation:

- When we substitute [tex]\( F = 76.1 \)[/tex] into the function [tex]\( C(A) \)[/tex], we calculate the equivalent temperature in degrees Celsius.
- Thus, [tex]\( C(76.1) \)[/tex] represents the temperature of [tex]\( 76.1^\circ \)[/tex] Fahrenheit converted to degrees Celsius.

Therefore, the correct answer is:
- The temperature of [tex]\( 76.1 \)[/tex] degrees Fahrenheit converted to degrees Celsius.