College

On his first day of school, Kareem found the high temperature in degrees Fahrenheit to be [tex]76.1^{\circ}[/tex]. He plans to use the function [tex]C(F) = \frac{5}{9}(F-32)[/tex] to convert this temperature from degrees Fahrenheit to degrees Celsius.

What does [tex]C(76.1)[/tex] represent?

A. The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.

B. The temperature of 76.1 degrees Celsius converted to degrees Fahrenheit.

C. The amount of time it takes a temperature of 76.1 degrees Fahrenheit to be converted to 32 degrees Celsius.

D. The amount of time it takes a temperature of 76.1 degrees Celsius to be converted to 32 degrees Fahrenheit.

Answer :

To solve the problem, we need to determine what [tex]\( C(76.1) \)[/tex] represents when using the function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex].

The function [tex]\( C(F) \)[/tex] is designed to convert a temperature from degrees Fahrenheit to degrees Celsius. Here's how it works:

1. Understand the Formula:
- The formula [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex] converts Fahrenheit to Celsius. This is a standard conversion formula where you subtract 32 from the Fahrenheit temperature, then multiply the result by [tex]\(\frac{5}{9}\)[/tex].

2. Identify What We Have:
- We're given a specific Fahrenheit temperature: 76.1°F.

3. Apply the Temperature to the Function:
- We substitute 76.1 for [tex]\( F \)[/tex] in the function [tex]\( C(F) \)[/tex].
- So, [tex]\( C(76.1) = \frac{5}{9}(76.1 - 32) \)[/tex].

4. Interpret the Result:
- The result of this conversion, which is approximately 24.5 degrees Celsius, represents the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.

Therefore, [tex]\( C(76.1) \)[/tex] specifically represents the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.