Answer :
Sure! Let's go through the solution step-by-step to understand what [tex]$C(76.1)$[/tex] represents:
1. Identify the Function and its Purpose:
Kareem is using a function to convert temperature from degrees Fahrenheit to degrees Celsius. The function given is:
[tex]\[
C(F) = \frac{5}{9}(F - 32)
\][/tex]
In this function, [tex]\( C(F) \)[/tex] represents the temperature in degrees Celsius after converting from degrees Fahrenheit, where [tex]\( F \)[/tex] is the temperature in Fahrenheit.
2. Substitute the Given Temperature:
We're given that the temperature in degrees Fahrenheit is [tex]\( 76.1 \)[/tex]. We need to use the function to convert this temperature to degrees Celsius. So, we substitute [tex]\( F = 76.1 \)[/tex] into the function:
[tex]\[
C(76.1) = \frac{5}{9}(76.1 - 32)
\][/tex]
3. Interpret the Result:
The expression [tex]\( \frac{5}{9}(76.1 - 32) \)[/tex] computes the temperature in degrees Celsius that corresponds to [tex]\( 76.1 \)[/tex] degrees Fahrenheit. After evaluating this expression, you find that:
- [tex]\( C(76.1) \)[/tex] is approximately [tex]\( 24.5 \)[/tex] degrees Celsius.
4. Conclusion:
Therefore, [tex]\( C(76.1) \)[/tex] represents the conversion of the temperature [tex]\( 76.1 \)[/tex] degrees Fahrenheit into degrees Celsius. The correct interpretation from the given options is:
- The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.
1. Identify the Function and its Purpose:
Kareem is using a function to convert temperature from degrees Fahrenheit to degrees Celsius. The function given is:
[tex]\[
C(F) = \frac{5}{9}(F - 32)
\][/tex]
In this function, [tex]\( C(F) \)[/tex] represents the temperature in degrees Celsius after converting from degrees Fahrenheit, where [tex]\( F \)[/tex] is the temperature in Fahrenheit.
2. Substitute the Given Temperature:
We're given that the temperature in degrees Fahrenheit is [tex]\( 76.1 \)[/tex]. We need to use the function to convert this temperature to degrees Celsius. So, we substitute [tex]\( F = 76.1 \)[/tex] into the function:
[tex]\[
C(76.1) = \frac{5}{9}(76.1 - 32)
\][/tex]
3. Interpret the Result:
The expression [tex]\( \frac{5}{9}(76.1 - 32) \)[/tex] computes the temperature in degrees Celsius that corresponds to [tex]\( 76.1 \)[/tex] degrees Fahrenheit. After evaluating this expression, you find that:
- [tex]\( C(76.1) \)[/tex] is approximately [tex]\( 24.5 \)[/tex] degrees Celsius.
4. Conclusion:
Therefore, [tex]\( C(76.1) \)[/tex] represents the conversion of the temperature [tex]\( 76.1 \)[/tex] degrees Fahrenheit into degrees Celsius. The correct interpretation from the given options is:
- The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.