High School

On his first day of school, Kareem found the high temperature in degrees Fahrenheit to be [tex]$76.1^{\circ}$[/tex]. He plans to use the function [tex]$C(F)=\frac{5}{9}(F-32)$[/tex] to convert this temperature from degrees Fahrenheit to degrees Celsius. What does [tex]$C(76.1)$[/tex] represent?

A. The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.

B. The temperature of 76.1 degrees Celsius converted to degrees Fahrenheit.

C. The amount of time it takes a temperature of 76.1 degrees Fahrenheit to be converted to 32 degrees Celsius.

D. The amount of time it takes a temperature of 76.1 degrees Celsius to be converted to 32 degrees Fahrenheit.

Answer :

To determine what [tex]\( C(76.1) \)[/tex] represents, we need to understand the function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex], which is used to convert temperatures from degrees Fahrenheit to degrees Celsius.

1. Identify what [tex]\( F \)[/tex] stands for: In this context, [tex]\( F \)[/tex] is the temperature in degrees Fahrenheit. For this problem, [tex]\( F = 76.1 \)[/tex].

2. Understand what the function does: The function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex] takes a temperature in Fahrenheit, subtracts 32, then multiplies the result by [tex]\(\frac{5}{9}\)[/tex]. This converts the temperature from Fahrenheit to Celsius.

3. Interpret [tex]\( C(76.1) \)[/tex]: When we plug 76.1 into the function [tex]\( C(F) \)[/tex], it calculates the equivalent temperature in degrees Celsius.

4. Result interpretation: Therefore, [tex]\( C(76.1) \)[/tex] represents the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.

Thus, the correct answer is:
- The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.