College

On his first day of school, Kareem found the high temperature in degrees Fahrenheit to be [tex]76.1^{\circ}[/tex]. He plans to use the function [tex]C(F)=\frac{5}{9}(F-32)[/tex] to convert this temperature from degrees Fahrenheit to degrees Celsius.

What does [tex]C(76.1)[/tex] represent?

A. The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius
B. The temperature of 76.1 degrees Celsius converted to degrees Fahrenheit
C. The amount of time it takes a temperature of 76.1 degrees Fahrenheit to be converted to 32 degrees Celsius
D. The amount of time it takes a temperature of 76.1 degrees Celsius to be converted to 32 degrees Fahrenheit

Answer :

The function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex] is used to convert a temperature from degrees Fahrenheit to degrees Celsius. When we apply the function to [tex]\( F = 76.1 \)[/tex], it helps us convert this specific temperature from Fahrenheit to Celsius.

Let's break down what [tex]\( C(76.1) \)[/tex] represents:
- We start with a temperature of 76.1 degrees Fahrenheit.
- By using the conversion function, we substitute 76.1 for [tex]\( F \)[/tex] in the formula:
[tex]\[
C = \frac{5}{9}(76.1 - 32)
\][/tex]
- We perform the calculation inside the parentheses first: [tex]\( 76.1 - 32 = 44.1 \)[/tex].
- Next, we multiply 44.1 by [tex]\( \frac{5}{9} \)[/tex]:
[tex]\[
C = \frac{5}{9} \times 44.1
\][/tex]
- This gives us a result of approximately 24.5 degrees Celsius.

Therefore, [tex]\( C(76.1) \)[/tex] represents the temperature of 76.1 degrees Fahrenheit converted to approximately 24.5 degrees Celsius. So the correct interpretation of [tex]\( C(76.1) \)[/tex] is:

- The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.