Answer :
The function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex] is used to convert a temperature from degrees Fahrenheit to degrees Celsius. When we apply the function to [tex]\( F = 76.1 \)[/tex], it helps us convert this specific temperature from Fahrenheit to Celsius.
Let's break down what [tex]\( C(76.1) \)[/tex] represents:
- We start with a temperature of 76.1 degrees Fahrenheit.
- By using the conversion function, we substitute 76.1 for [tex]\( F \)[/tex] in the formula:
[tex]\[
C = \frac{5}{9}(76.1 - 32)
\][/tex]
- We perform the calculation inside the parentheses first: [tex]\( 76.1 - 32 = 44.1 \)[/tex].
- Next, we multiply 44.1 by [tex]\( \frac{5}{9} \)[/tex]:
[tex]\[
C = \frac{5}{9} \times 44.1
\][/tex]
- This gives us a result of approximately 24.5 degrees Celsius.
Therefore, [tex]\( C(76.1) \)[/tex] represents the temperature of 76.1 degrees Fahrenheit converted to approximately 24.5 degrees Celsius. So the correct interpretation of [tex]\( C(76.1) \)[/tex] is:
- The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.
Let's break down what [tex]\( C(76.1) \)[/tex] represents:
- We start with a temperature of 76.1 degrees Fahrenheit.
- By using the conversion function, we substitute 76.1 for [tex]\( F \)[/tex] in the formula:
[tex]\[
C = \frac{5}{9}(76.1 - 32)
\][/tex]
- We perform the calculation inside the parentheses first: [tex]\( 76.1 - 32 = 44.1 \)[/tex].
- Next, we multiply 44.1 by [tex]\( \frac{5}{9} \)[/tex]:
[tex]\[
C = \frac{5}{9} \times 44.1
\][/tex]
- This gives us a result of approximately 24.5 degrees Celsius.
Therefore, [tex]\( C(76.1) \)[/tex] represents the temperature of 76.1 degrees Fahrenheit converted to approximately 24.5 degrees Celsius. So the correct interpretation of [tex]\( C(76.1) \)[/tex] is:
- The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.