Answer :
To understand what [tex]\( C(76.1) \)[/tex] represents, let's analyze the provided function for converting temperatures from Fahrenheit to Celsius. The function is:
[tex]\[
C(F) = \frac{5}{9}(F - 32)
\][/tex]
This function is used to convert a temperature in degrees Fahrenheit ([tex]\( F \)[/tex]) to degrees Celsius ([tex]\( C \)[/tex]).
Now, let's apply this function to the given temperature of [tex]\( 76.1^\circ \)[/tex] Fahrenheit:
1. Start with the formula:
[tex]\[
C(76.1) = \frac{5}{9}(76.1 - 32)
\][/tex]
2. Calculate the difference inside the parentheses:
[tex]\[
76.1 - 32 = 44.1
\][/tex]
3. Now, multiply the result by [tex]\(\frac{5}{9}\)[/tex]:
[tex]\[
C(76.1) = \frac{5}{9} \times 44.1
\][/tex]
4. Calculate the final result:
[tex]\[
C(76.1) \approx 24.5^\circ \text{ Celsius}
\][/tex]
Therefore, [tex]\( C(76.1) \)[/tex] represents the temperature of [tex]\( 76.1^\circ \)[/tex] Fahrenheit converted to approximately [tex]\( 24.5^\circ \)[/tex] Celsius. This means the correct choice is:
- The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.
[tex]\[
C(F) = \frac{5}{9}(F - 32)
\][/tex]
This function is used to convert a temperature in degrees Fahrenheit ([tex]\( F \)[/tex]) to degrees Celsius ([tex]\( C \)[/tex]).
Now, let's apply this function to the given temperature of [tex]\( 76.1^\circ \)[/tex] Fahrenheit:
1. Start with the formula:
[tex]\[
C(76.1) = \frac{5}{9}(76.1 - 32)
\][/tex]
2. Calculate the difference inside the parentheses:
[tex]\[
76.1 - 32 = 44.1
\][/tex]
3. Now, multiply the result by [tex]\(\frac{5}{9}\)[/tex]:
[tex]\[
C(76.1) = \frac{5}{9} \times 44.1
\][/tex]
4. Calculate the final result:
[tex]\[
C(76.1) \approx 24.5^\circ \text{ Celsius}
\][/tex]
Therefore, [tex]\( C(76.1) \)[/tex] represents the temperature of [tex]\( 76.1^\circ \)[/tex] Fahrenheit converted to approximately [tex]\( 24.5^\circ \)[/tex] Celsius. This means the correct choice is:
- The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.