High School

On his first day of school, Kareem found the high temperature in degrees Fahrenheit to be [tex]$76.1^{\circ}$[/tex]. He plans to use the function [tex]$C(F)=\frac{5}{9}(F-32)$[/tex] to convert this temperature from degrees Fahrenheit to degrees Celsius.

What does [tex]$C(76.1)$[/tex] represent?

A. The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.

B. The temperature of 76.1 degrees Celsius converted to degrees Fahrenheit.

C. The amount of time it takes a temperature of 76.1 degrees Fahrenheit to be converted to 32 degrees Celsius.

D. The amount of time it takes a temperature of 76.1 degrees Celsius to be converted to 32 degrees Fahrenheit.

Answer :

To understand what [tex]\( C(76.1) \)[/tex] represents, let's analyze the provided function for converting temperatures from Fahrenheit to Celsius. The function is:

[tex]\[
C(F) = \frac{5}{9}(F - 32)
\][/tex]

This function is used to convert a temperature in degrees Fahrenheit ([tex]\( F \)[/tex]) to degrees Celsius ([tex]\( C \)[/tex]).

Now, let's apply this function to the given temperature of [tex]\( 76.1^\circ \)[/tex] Fahrenheit:

1. Start with the formula:
[tex]\[
C(76.1) = \frac{5}{9}(76.1 - 32)
\][/tex]

2. Calculate the difference inside the parentheses:
[tex]\[
76.1 - 32 = 44.1
\][/tex]

3. Now, multiply the result by [tex]\(\frac{5}{9}\)[/tex]:
[tex]\[
C(76.1) = \frac{5}{9} \times 44.1
\][/tex]

4. Calculate the final result:
[tex]\[
C(76.1) \approx 24.5^\circ \text{ Celsius}
\][/tex]

Therefore, [tex]\( C(76.1) \)[/tex] represents the temperature of [tex]\( 76.1^\circ \)[/tex] Fahrenheit converted to approximately [tex]\( 24.5^\circ \)[/tex] Celsius. This means the correct choice is:

- The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.