On his first day of school, Kareem found the high temperature in degrees Fahrenheit to be [tex]$76.1^{\circ}$[/tex]. He plans to use the function [tex]$C(F)=\frac{5}{9}(F-32)$[/tex] to convert this temperature from degrees Fahrenheit to degrees Celsius.

What does [tex]$C(76.1)$[/tex] represent?

A. The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.

B. The temperature of 76.1 degrees Celsius converted to degrees Fahrenheit.

C. The amount of time it takes a temperature of 76.1 degrees Fahrenheit to be converted to 32 degrees Celsius.

D. The amount of time it takes a temperature of 76.1 degrees Celsius to be converted to 32 degrees Fahrenheit.

Answer :

To solve the problem of converting 76.1 degrees Fahrenheit to degrees Celsius, we use the provided formula:

[tex]\[ C(F) = \frac{5}{9}(F - 32) \][/tex]

This formula is used to convert a temperature from degrees Fahrenheit (F) to degrees Celsius (C). Let's determine what [tex]\( C(76.1) \)[/tex] represents:

1. Identify the Given Temperature: We have a temperature of 76.1 degrees Fahrenheit.

2. Substitute into the Formula: Substitute 76.1 for F in the conversion formula.
[tex]\[
C(76.1) = \frac{5}{9}(76.1 - 32)
\][/tex]

3. Perform the Calculation:
- Subtract 32 from 76.1, which equals 44.1.
- Multiply 44.1 by [tex]\(\frac{5}{9}\)[/tex].

4. Calculate the Celsius Temperature:
[tex]\[
C(76.1) \approx 24.5
\][/tex]

Hence, [tex]\( C(76.1) \)[/tex] represents the temperature of 76.1 degrees Fahrenheit converted to approximately 24.5 degrees Celsius. The correct interpretation of [tex]\( C(76.1) \)[/tex] from the options provided is:

- the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.