Answer :
To solve this problem, we need to understand what the function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex] does. This function is used to convert a temperature from degrees Fahrenheit (F) to degrees Celsius (C).
In this specific situation, Kareem has the temperature [tex]\( 76.1^\circ \)[/tex] Fahrenheit, and he wants to convert it to degrees Celsius. Here's the step-by-step breakdown:
1. Identify the function: We're using the conversion function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex].
2. Substitute the Fahrenheit temperature: We need to plug in [tex]\( F = 76.1 \)[/tex] into the function. So, we calculate [tex]\( C(76.1) \)[/tex].
3. Execute the conversion:
[tex]\[
C(76.1) = \frac{5}{9}(76.1 - 32)
\][/tex]
4. Simplify the expression:
[tex]\[
C(76.1) = \frac{5}{9} \times 44.1
\][/tex]
5. Perform the multiplication:
[tex]\[
C(76.1) \approx 24.5
\][/tex]
Thus, [tex]\( C(76.1) \)[/tex] represents the temperature of 76.1 degrees Fahrenheit converted to approximately 24.5 degrees Celsius.
The first option is correct: "the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius."
In this specific situation, Kareem has the temperature [tex]\( 76.1^\circ \)[/tex] Fahrenheit, and he wants to convert it to degrees Celsius. Here's the step-by-step breakdown:
1. Identify the function: We're using the conversion function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex].
2. Substitute the Fahrenheit temperature: We need to plug in [tex]\( F = 76.1 \)[/tex] into the function. So, we calculate [tex]\( C(76.1) \)[/tex].
3. Execute the conversion:
[tex]\[
C(76.1) = \frac{5}{9}(76.1 - 32)
\][/tex]
4. Simplify the expression:
[tex]\[
C(76.1) = \frac{5}{9} \times 44.1
\][/tex]
5. Perform the multiplication:
[tex]\[
C(76.1) \approx 24.5
\][/tex]
Thus, [tex]\( C(76.1) \)[/tex] represents the temperature of 76.1 degrees Fahrenheit converted to approximately 24.5 degrees Celsius.
The first option is correct: "the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius."