High School

On his first day of school, Kareem found the high temperature in degrees Fahrenheit to be [tex]$76.1^{\circ}$[/tex]. He plans to use the function [tex]$C(F)=\frac{5}{9}(F-32)$[/tex] to convert this temperature from degrees Fahrenheit to degrees Celsius.

What does [tex]C(76.1)[/tex] represent?

A. The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.
B. The temperature of 76.1 degrees Celsius converted to degrees Fahrenheit.
C. The amount of time it takes a temperature of 76.1 degrees Fahrenheit to be converted to 32 degrees Celsius.
D. The amount of time it takes a temperature of 76.1 degrees Celsius to be converted to 32 degrees Fahrenheit.

Answer :

To determine what [tex]\( C(76.1) \)[/tex] represents in this scenario, we first need to understand the function Kareem is using for the conversion:

[tex]\[ C(F) = \frac{5}{9}(F - 32) \][/tex]

This is the formula to convert a temperature from degrees Fahrenheit ([tex]\( F \)[/tex]) to degrees Celsius ([tex]\( C \)[/tex]). Now, let's consider the given temperature of 76.1 degrees Fahrenheit. We want to find [tex]\( C(76.1) \)[/tex], meaning we will substitute [tex]\( F = 76.1 \)[/tex] into the function:

[tex]\[ C(76.1) = \frac{5}{9}(76.1 - 32) \][/tex]

Let's break down the steps to perform this calculation:

1. Subtract 32 from 76.1:
[tex]\[ 76.1 - 32 = 44.1 \][/tex]

2. Multiply the result by [tex]\(\frac{5}{9}\)[/tex]:
[tex]\[ \frac{5}{9} \times 44.1 \][/tex]

After performing the multiplication, we obtain:
[tex]\[ \frac{5}{9} \times 44.1 \approx 24.5 \][/tex]

So, [tex]\( C(76.1) \approx 24.5 \)[/tex].

Given this calculation, [tex]\( C(76.1) \)[/tex] represents the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.

Therefore, the correct answer is:
- The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.