High School

On his first day of school, Kareem found the high temperature in degrees Fahrenheit to be [tex]$76.1^{\circ}$[/tex]. He plans to use the function [tex]$C(F)=\frac{5}{9}(F-32)$[/tex] to convert this temperature from degrees Fahrenheit to degrees Celsius.

What does [tex]$C(76.1)$[/tex] represent?

A. The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.
B. The temperature of 76.1 degrees Celsius converted to degrees Fahrenheit.
C. The amount of time it takes a temperature of 76.1 degrees Fahrenheit to be converted to 32 degrees Celsius.
D. The amount of time it takes a temperature of 76.1 degrees Celsius to be converted to 32 degrees Fahrenheit.

Answer :

Sure! Let's break down the problem step by step.

We need to convert a temperature from degrees Fahrenheit to degrees Celsius using the provided conversion function:
[tex]\[ C(F) = \frac{5}{9}(F - 32) \][/tex]

Here's what each part of the function means:
- [tex]\( F \)[/tex] is the temperature in degrees Fahrenheit.
- [tex]\( C(F) \)[/tex] is the temperature in degrees Celsius.
- The formula [tex]\(\frac{5}{9}(F-32)\)[/tex] converts Fahrenheit to Celsius.

Given:
- Kareem found the temperature to be [tex]\( 76.1^{\circ} \)[/tex] Fahrenheit.
- We need to find out what [tex]\( C(76.1) \)[/tex] represents.

To do this, we will plug [tex]\( 76.1 \)[/tex] into the conversion formula.

1. Start with the function:
[tex]\[ C(F) = \frac{5}{9}(F - 32) \][/tex]

2. Substitute [tex]\( F \)[/tex] with [tex]\( 76.1 \)[/tex]:
[tex]\[ C(76.1) = \frac{5}{9}(76.1 - 32) \][/tex]

3. Calculate the value inside the parentheses:
[tex]\[ 76.1 - 32 = 44.1 \][/tex]

4. Now multiply by [tex]\(\frac{5}{9}\)[/tex]:
[tex]\[ C(76.1) = \frac{5}{9} \times 44.1 \][/tex]

5. Perform the multiplication:
[tex]\[ C(76.1) = 24.499999999999996 \][/tex]

Therefore, [tex]\( C(76.1) \)[/tex] represents the temperature of [tex]\( 76.1 \)[/tex] degrees Fahrenheit converted to degrees Celsius. The precise Celsius value is approximately [tex]\( 24.5 \)[/tex] degrees.

So, the correct interpretation of [tex]\( C(76.1) \)[/tex] is:

The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.