Answer :
Sure! Let's break down the problem step by step.
We need to convert a temperature from degrees Fahrenheit to degrees Celsius using the provided conversion function:
[tex]\[ C(F) = \frac{5}{9}(F - 32) \][/tex]
Here's what each part of the function means:
- [tex]\( F \)[/tex] is the temperature in degrees Fahrenheit.
- [tex]\( C(F) \)[/tex] is the temperature in degrees Celsius.
- The formula [tex]\(\frac{5}{9}(F-32)\)[/tex] converts Fahrenheit to Celsius.
Given:
- Kareem found the temperature to be [tex]\( 76.1^{\circ} \)[/tex] Fahrenheit.
- We need to find out what [tex]\( C(76.1) \)[/tex] represents.
To do this, we will plug [tex]\( 76.1 \)[/tex] into the conversion formula.
1. Start with the function:
[tex]\[ C(F) = \frac{5}{9}(F - 32) \][/tex]
2. Substitute [tex]\( F \)[/tex] with [tex]\( 76.1 \)[/tex]:
[tex]\[ C(76.1) = \frac{5}{9}(76.1 - 32) \][/tex]
3. Calculate the value inside the parentheses:
[tex]\[ 76.1 - 32 = 44.1 \][/tex]
4. Now multiply by [tex]\(\frac{5}{9}\)[/tex]:
[tex]\[ C(76.1) = \frac{5}{9} \times 44.1 \][/tex]
5. Perform the multiplication:
[tex]\[ C(76.1) = 24.499999999999996 \][/tex]
Therefore, [tex]\( C(76.1) \)[/tex] represents the temperature of [tex]\( 76.1 \)[/tex] degrees Fahrenheit converted to degrees Celsius. The precise Celsius value is approximately [tex]\( 24.5 \)[/tex] degrees.
So, the correct interpretation of [tex]\( C(76.1) \)[/tex] is:
The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.
We need to convert a temperature from degrees Fahrenheit to degrees Celsius using the provided conversion function:
[tex]\[ C(F) = \frac{5}{9}(F - 32) \][/tex]
Here's what each part of the function means:
- [tex]\( F \)[/tex] is the temperature in degrees Fahrenheit.
- [tex]\( C(F) \)[/tex] is the temperature in degrees Celsius.
- The formula [tex]\(\frac{5}{9}(F-32)\)[/tex] converts Fahrenheit to Celsius.
Given:
- Kareem found the temperature to be [tex]\( 76.1^{\circ} \)[/tex] Fahrenheit.
- We need to find out what [tex]\( C(76.1) \)[/tex] represents.
To do this, we will plug [tex]\( 76.1 \)[/tex] into the conversion formula.
1. Start with the function:
[tex]\[ C(F) = \frac{5}{9}(F - 32) \][/tex]
2. Substitute [tex]\( F \)[/tex] with [tex]\( 76.1 \)[/tex]:
[tex]\[ C(76.1) = \frac{5}{9}(76.1 - 32) \][/tex]
3. Calculate the value inside the parentheses:
[tex]\[ 76.1 - 32 = 44.1 \][/tex]
4. Now multiply by [tex]\(\frac{5}{9}\)[/tex]:
[tex]\[ C(76.1) = \frac{5}{9} \times 44.1 \][/tex]
5. Perform the multiplication:
[tex]\[ C(76.1) = 24.499999999999996 \][/tex]
Therefore, [tex]\( C(76.1) \)[/tex] represents the temperature of [tex]\( 76.1 \)[/tex] degrees Fahrenheit converted to degrees Celsius. The precise Celsius value is approximately [tex]\( 24.5 \)[/tex] degrees.
So, the correct interpretation of [tex]\( C(76.1) \)[/tex] is:
The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.