Answer :
Sure! Let's walk through the problem step-by-step.
We are given the temperature in degrees Fahrenheit, which is [tex]\(76.1^\circ F\)[/tex]. We want to convert this temperature to degrees Celsius using the function:
[tex]\[ C(F) = \frac{5}{9}(F - 32) \][/tex]
Here, [tex]\(F\)[/tex] is the temperature in degrees Fahrenheit and [tex]\(C(F)\)[/tex] is the temperature in degrees Celsius.
To find [tex]\(C(76.1)\)[/tex]:
1. Substitute the given Fahrenheit temperature into the equation:
[tex]\[ C(76.1) = \frac{5}{9}(76.1 - 32) \][/tex]
2. Simplify inside the parentheses first:
[tex]\[ 76.1 - 32 = 44.1 \][/tex]
3. Multiply by [tex]\(\frac{5}{9}\)[/tex]:
[tex]\[ C(76.1) = \frac{5}{9} \times 44.1 \][/tex]
4. Perform the multiplication:
[tex]\[ \frac{5}{9} \times 44.1 \approx 24.5 \][/tex]
Therefore, [tex]\(C(76.1)\)[/tex] represents the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.
The correct answer is:
- The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius
We are given the temperature in degrees Fahrenheit, which is [tex]\(76.1^\circ F\)[/tex]. We want to convert this temperature to degrees Celsius using the function:
[tex]\[ C(F) = \frac{5}{9}(F - 32) \][/tex]
Here, [tex]\(F\)[/tex] is the temperature in degrees Fahrenheit and [tex]\(C(F)\)[/tex] is the temperature in degrees Celsius.
To find [tex]\(C(76.1)\)[/tex]:
1. Substitute the given Fahrenheit temperature into the equation:
[tex]\[ C(76.1) = \frac{5}{9}(76.1 - 32) \][/tex]
2. Simplify inside the parentheses first:
[tex]\[ 76.1 - 32 = 44.1 \][/tex]
3. Multiply by [tex]\(\frac{5}{9}\)[/tex]:
[tex]\[ C(76.1) = \frac{5}{9} \times 44.1 \][/tex]
4. Perform the multiplication:
[tex]\[ \frac{5}{9} \times 44.1 \approx 24.5 \][/tex]
Therefore, [tex]\(C(76.1)\)[/tex] represents the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.
The correct answer is:
- The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius