Answer :
To solve the problem of converting [tex]\( 76.1^{\circ} \)[/tex] Fahrenheit to degrees Celsius using the function provided, follow these steps:
1. Understand the Conversion Function:
The function to convert degrees Fahrenheit (F) to degrees Celsius (C) provided is:
[tex]\[
C(F) = \frac{5}{9} \times (F - 32)
\][/tex]
Here, [tex]\( C \)[/tex] represents the temperature in degrees Celsius and [tex]\( F \)[/tex] represents the temperature in degrees Fahrenheit.
2. Substitute the Given Value:
You are given a temperature of [tex]\( 76.1^{\circ} \)[/tex] Fahrenheit. Substitute [tex]\( F = 76.1 \)[/tex] into the conversion formula:
[tex]\[
C(76.1) = \frac{5}{9} \times (76.1 - 32)
\][/tex]
3. Calculate the Difference:
Perform the subtraction inside the parentheses first:
[tex]\[
76.1 - 32 = 44.1
\][/tex]
4. Apply the Conversion Factor:
Multiply the result by [tex]\( \frac{5}{9} \)[/tex]:
[tex]\[
C(76.1) = \frac{5}{9} \times 44.1
\][/tex]
5. Perform the Multiplication:
Multiplying [tex]\( \frac{5}{9} \)[/tex] by [tex]\( 44.1 \)[/tex]:
[tex]\[
\frac{5}{9} \times 44.1 = 24.499999999999996
\][/tex]
Therefore, [tex]\( C(76.1) \)[/tex] represents the temperature of [tex]\( 76.1^{\circ} \)[/tex] Fahrenheit converted to degrees Celsius, which is approximately [tex]\( 24.5^{\circ} \)[/tex].
Thus, the correct interpretation of [tex]\( C(76.1) \)[/tex] is:
- The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.
1. Understand the Conversion Function:
The function to convert degrees Fahrenheit (F) to degrees Celsius (C) provided is:
[tex]\[
C(F) = \frac{5}{9} \times (F - 32)
\][/tex]
Here, [tex]\( C \)[/tex] represents the temperature in degrees Celsius and [tex]\( F \)[/tex] represents the temperature in degrees Fahrenheit.
2. Substitute the Given Value:
You are given a temperature of [tex]\( 76.1^{\circ} \)[/tex] Fahrenheit. Substitute [tex]\( F = 76.1 \)[/tex] into the conversion formula:
[tex]\[
C(76.1) = \frac{5}{9} \times (76.1 - 32)
\][/tex]
3. Calculate the Difference:
Perform the subtraction inside the parentheses first:
[tex]\[
76.1 - 32 = 44.1
\][/tex]
4. Apply the Conversion Factor:
Multiply the result by [tex]\( \frac{5}{9} \)[/tex]:
[tex]\[
C(76.1) = \frac{5}{9} \times 44.1
\][/tex]
5. Perform the Multiplication:
Multiplying [tex]\( \frac{5}{9} \)[/tex] by [tex]\( 44.1 \)[/tex]:
[tex]\[
\frac{5}{9} \times 44.1 = 24.499999999999996
\][/tex]
Therefore, [tex]\( C(76.1) \)[/tex] represents the temperature of [tex]\( 76.1^{\circ} \)[/tex] Fahrenheit converted to degrees Celsius, which is approximately [tex]\( 24.5^{\circ} \)[/tex].
Thus, the correct interpretation of [tex]\( C(76.1) \)[/tex] is:
- The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.