College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Multiply the trinomials:

[tex]
(x^2-x+9)(x^2+x+15)
[/tex]

A. [tex]x^4-23x^2-16x+135[/tex]

B. [tex]x^4+23x^2-6x+135[/tex]

C. [tex]x^4+3x^2-16x+135[/tex]

D. [tex]x^4-3x^2-6x+135[/tex]

Please select the best answer from the choices provided:

- A
- B
- C
- D

Answer :

To multiply the trinomials
[tex]$$\left(x^2 - x + 9\right)\left(x^2 + x + 15\right),$$[/tex]
we can use the distributive property (also known as the FOIL method for trinomials by distributing each term).

First, multiply each term in the first trinomial by each term in the second trinomial:

1. Multiply [tex]\( x^2 \)[/tex] by each term in the second trinomial:
[tex]$$
x^2 \cdot x^2 = x^4, \quad x^2 \cdot x = x^3, \quad x^2 \cdot 15 = 15x^2.
$$[/tex]

2. Multiply [tex]\( -x \)[/tex] by each term in the second trinomial:
[tex]$$
-x \cdot x^2 = -x^3, \quad -x \cdot x = -x^2, \quad -x \cdot 15 = -15x.
$$[/tex]

3. Multiply [tex]\( 9 \)[/tex] by each term in the second trinomial:
[tex]$$
9 \cdot x^2 = 9x^2, \quad 9 \cdot x = 9x, \quad 9 \cdot 15 = 135.
$$[/tex]

Now, list all the resulting terms:
[tex]$$
x^4 + x^3 + 15x^2 - x^3 - x^2 - 15x + 9x^2 + 9x + 135.
$$[/tex]

Next, combine like terms:

- The [tex]\( x^4 \)[/tex] term:
[tex]$$
x^4.
$$[/tex]

- The [tex]\( x^3 \)[/tex] terms:
[tex]$$
x^3 - x^3 = 0.
$$[/tex]

- The [tex]\( x^2 \)[/tex] terms:
[tex]$$
15x^2 - x^2 + 9x^2 = (15 - 1 + 9)x^2 = 23x^2.
$$[/tex]

- The [tex]\( x \)[/tex] terms:
[tex]$$
-15x + 9x = -6x.
$$[/tex]

- The constant term:
[tex]$$
135.
$$[/tex]

Thus, the product is:
[tex]$$
x^4 + 23x^2 - 6x + 135.
$$[/tex]

Comparing with the given options:

A. [tex]\( x^4 - 23x^2 - 16x + 135 \)[/tex]
B. [tex]\( x^4 + 23x^2 - 6x + 135 \)[/tex]
C. [tex]\( x^4 + 3x^2 - 16x + 135 \)[/tex]
D. [tex]\( x^4 - 3x^2 - 6x + 135 \)[/tex]

The expression [tex]\( x^4 + 23x^2 - 6x + 135 \)[/tex] corresponds to option B.