College

Multiply the polynomials.

[tex]\left(8x^2 + 6x + 8\right)(6x - 5)[/tex]

A. [tex]48x^3 - 76x^2 + 18x - 40[/tex]

B. [tex]48x^3 - 4x^2 + 18x + 40[/tex]

C. [tex]48x^3 - 4x^2 + 78x - 40[/tex]

D. [tex]48x^3 - 4x^2 + 18x - 40[/tex]

Answer :

Sure! Let's multiply the polynomials [tex]\((8x^2 + 6x + 8)\)[/tex] and [tex]\((6x - 5)\)[/tex] step-by-step.

### Step 1: Distribute Each Term
1. Multiply [tex]\(8x^2\)[/tex] by each term in [tex]\((6x - 5)\)[/tex]:
- [tex]\(8x^2 \cdot 6x = 48x^3\)[/tex]
- [tex]\(8x^2 \cdot (-5) = -40x^2\)[/tex]

2. Multiply [tex]\(6x\)[/tex] by each term in [tex]\((6x - 5)\)[/tex]:
- [tex]\(6x \cdot 6x = 36x^2\)[/tex]
- [tex]\(6x \cdot (-5) = -30x\)[/tex]

3. Multiply [tex]\(8\)[/tex] by each term in [tex]\((6x - 5)\)[/tex]:
- [tex]\(8 \cdot 6x = 48x\)[/tex]
- [tex]\(8 \cdot (-5) = -40\)[/tex]

### Step 2: Combine Like Terms
- We'll add up all the terms you got from the distributions:

1. [tex]\(x^3\)[/tex] term:
- [tex]\(48x^3\)[/tex]

2. [tex]\(x^2\)[/tex] terms:
- Combine [tex]\(-40x^2\)[/tex] and [tex]\(36x^2\)[/tex] to get [tex]\(-4x^2\)[/tex]

3. [tex]\(x\)[/tex] terms:
- Combine [tex]\(-30x\)[/tex] and [tex]\(48x\)[/tex] to get [tex]\(18x\)[/tex]

4. Constant term:
- [tex]\(-40\)[/tex]

### Final Polynomial

Putting it all together, the product of the polynomials is:
[tex]\[ 48x^3 - 4x^2 + 18x - 40 \][/tex]

So, the correct option is D. [tex]\( 48x^3 - 4x^2 + 18x - 40 \)[/tex].