High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Multiply the polynomials:

[tex]\left(7x^2 + 9x + 7\right)(9x - 4)[/tex]

A. [tex]63x^3 + 53x^2 + 59x - 28[/tex]
B. [tex]63x^3 + 53x^2 + 27x - 28[/tex]
C. [tex]63x^3 + 81x^2 + 27x - 28[/tex]
D. [tex]63x^3 + 53x^2 + 27x + 28[/tex]

Answer :

To solve the problem of multiplying the polynomials [tex]\((7x^2 + 9x + 7)(9x - 4)\)[/tex], follow these steps:

1. Distribute each term in the first polynomial across each term in the second polynomial.

- Step 1: Multiply the first term in [tex]\((7x^2 + 9x + 7)\)[/tex] by each term in [tex]\((9x - 4)\)[/tex]:
- [tex]\(7x^2 \cdot 9x = 63x^3\)[/tex]
- [tex]\(7x^2 \cdot (-4) = -28x^2\)[/tex]

- Step 2: Multiply the second term in [tex]\((7x^2 + 9x + 7)\)[/tex] by each term in [tex]\((9x - 4)\)[/tex]:
- [tex]\(9x \cdot 9x = 81x^2\)[/tex]
- [tex]\(9x \cdot (-4) = -36x\)[/tex]

- Step 3: Multiply the third term in [tex]\((7x^2 + 9x + 7)\)[/tex] by each term in [tex]\((9x - 4)\)[/tex]:
- [tex]\(7 \cdot 9x = 63x\)[/tex]
- [tex]\(7 \cdot (-4) = -28\)[/tex]

2. Add all the resulting terms together:
- From the calculations, we have:
- [tex]\(63x^3\)[/tex]
- [tex]\(-28x^2 + 81x^2 = 53x^2\)[/tex]
- [tex]\(-36x + 63x = 27x\)[/tex]
- [tex]\(-28\)[/tex]

3. Combine like terms:
- The terms are already expanded and combined: [tex]\(63x^3 + 53x^2 + 27x - 28\)[/tex].

Based on these calculations, the correct answer is A: [tex]\(63x^3 + 53x^2 + 27x - 28\)[/tex].