High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Multiply the polynomials:

[tex]\left(7x^2 + 5x + 7\right)(4x - 6)[/tex]

A. [tex]28x^3 - 62x^2 - 2x - 42[/tex]

B. [tex]28x^3 - 22x^2 - 2x + 42[/tex]

C. [tex]28x^3 - 22x^2 - 2x - 42[/tex]

D. [tex]28x^3 - 22x^2 - 58x - 42[/tex]

Answer :

To multiply the polynomials [tex]\((7x^2 + 5x + 7)(4x - 6)\)[/tex], we can use the distributive property, also known as the FOIL method when applied to binomials, to expand the expression. Here's how you can do it step-by-step:

1. Distribute each term from the first polynomial to each term of the second polynomial:

[tex]\[
(7x^2 + 5x + 7)(4x - 6) = 7x^2(4x) + 7x^2(-6) + 5x(4x) + 5x(-6) + 7(4x) + 7(-6)
\][/tex]

2. Calculate each term:

- [tex]\(7x^2 \times 4x = 28x^3\)[/tex]
- [tex]\(7x^2 \times (-6) = -42x^2\)[/tex]
- [tex]\(5x \times 4x = 20x^2\)[/tex]
- [tex]\(5x \times (-6) = -30x\)[/tex]
- [tex]\(7 \times 4x = 28x\)[/tex]
- [tex]\(7 \times (-6) = -42\)[/tex]

3. Combine like terms:

Collect the [tex]\(x^2\)[/tex] and [tex]\(x\)[/tex] terms together:

- The [tex]\(x^3\)[/tex] term is [tex]\(28x^3\)[/tex].
- The [tex]\(x^2\)[/tex] terms are [tex]\(-42x^2 + 20x^2 = -22x^2\)[/tex].
- The [tex]\(x\)[/tex] terms are [tex]\(-30x + 28x = -2x\)[/tex].
- The constant term is [tex]\(-42\)[/tex].

4. Write the final expression:

Putting it all together, we have:

[tex]\[
28x^3 - 22x^2 - 2x - 42
\][/tex]

So, the correct answer is:
[tex]\[ \boxed{C. \, 28x^3 - 22x^2 - 2x - 42} \][/tex]