College

Multiply the polynomials:

[tex]\left(4x^2 + 4x + 6\right)(7x + 5)[/tex]

A. [tex]28x^3 + 48x^2 + 62x + 30[/tex]

B. [tex]28x^3 + 8x^2 + 22x + 30[/tex]

C. [tex]28x^3 + 8x^2 + 22x - 30[/tex]

D. [tex]28x^3 - 40x^2 + 70x + 30[/tex]

Answer :

Sure! Let's multiply the polynomials step by step.

We are given two polynomials:
- [tex]\(4x^2 + 4x + 6\)[/tex]
- [tex]\(7x + 5\)[/tex]

To find the product of these two polynomials, we need to multiply each term in the first polynomial by each term in the second polynomial and then combine like terms.

Step 1: Distribute each term in [tex]\((4x^2 + 4x + 6)\)[/tex] with each term in [tex]\((7x + 5)\)[/tex].

1. Multiply [tex]\(4x^2\)[/tex] by each term:
- [tex]\(4x^2 \times 7x = 28x^3\)[/tex]
- [tex]\(4x^2 \times 5 = 20x^2\)[/tex]

2. Multiply [tex]\(4x\)[/tex] by each term:
- [tex]\(4x \times 7x = 28x^2\)[/tex]
- [tex]\(4x \times 5 = 20x\)[/tex]

3. Multiply [tex]\(6\)[/tex] by each term:
- [tex]\(6 \times 7x = 42x\)[/tex]
- [tex]\(6 \times 5 = 30\)[/tex]

Step 2: Combine the like terms.

- Combine the [tex]\(x^3\)[/tex] terms:
- [tex]\(28x^3\)[/tex]

- Combine the [tex]\(x^2\)[/tex] terms:
- [tex]\(20x^2 + 28x^2 = 48x^2\)[/tex]

- Combine the [tex]\(x\)[/tex] terms:
- [tex]\(20x + 42x = 62x\)[/tex]

- The constant term:
- [tex]\(30\)[/tex]

Step 3: Write the final result.

The polynomial after combining like terms is:
[tex]\[28x^3 + 48x^2 + 62x + 30\][/tex]

So, the correct answer is:
A. [tex]\(28x^3 + 48x^2 + 62x + 30\)[/tex]